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Motivation
1. All maps of geotagged tweets look like maps of population density
2. LOTS of studies use geotagged tweets
3. Need for large-scale, multivariate, statistical work

Data
1. Geotags in tweets
2. US Census
3. Mobile users

Model
1. A statistical test for random distribution over population
2. Validating the null model
3. Spatial autocorrelation and spatial errors
4. Model specification

Results
1. Test of null hypothesis
2. Spatial autocorrelation
3. Spatial errors model results

Discussion
1. Limitations
2. Take-away
3. Future work



All maps of geotagged tweets look like maps of population
density

Tweets:

Adapted from ‘Contiguous United States geotag map (2009)’
by Eric Fischer
(https://www.flickr.com/photos/walkingsf/5985800498)

Population:

Population density in 2010 US Census. Adapted from
‘Nighttime Population Distribution Wall Map’ by Geography
Division, U.S. Department of Commerce / Economics and
Statistics Administration / U.S. Census Bureau. Each square
represents 1,000 people.

We’d like to correct for population density.
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LOTS of studies use geotagged tweets
...and for a lot of things!

I Mobility (Yuan et al., 2013; Cho et al., 2011);
I Urban life (Doran et al., 2013; Frias-Martinez et al., 2012);
I Transportation (Wang et al., 2014);
I Natural disasters, crises, and disaster response (Morstatter et al.,

2014; Lin and Margolin, 2014; Shelton et al., 2014; Sylvester et al.,
2014; Kumar et al., 2014);

I Public health (Sylvester et al., 2014; Nagar et al., 2014; Ghosh and
Guha, 2013)

I Language (Hong et al., 2012; Eisenstein et al., 2010; Kinsella et al.,
2011);

I Discourse (Leetaru et al., 2013);
I Information diffusion/flows (Kamath et al., 2013; van Liere, 2010);
I Emotion (Mitchell et al., 2013);
I Social ties (Stephens and Poorthuis, 2014; Takhteyev et al., 2012;

Cho et al., 2011)
Implicit assumption that geotagged tweets tell us about the larger world.
But do they?
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Need for large-scale, multivariate, statistical work

I Mislove et al. (2011):
I Method: connected user-specified ‘location’ field to county-level US

Census data (data prior to geotags in Twitter)
I Findings: overrepresentation of populous counties and cities with

large white populations; underrepresentation of midwest, southwest
Hispanic populations, south and midwestern black populations

I Hecht and Stephens (2014):
I Method: connects 56.7m tweets across US from 1.6m users over 25

days in 2013 to data from US Census and other federal agencies
I Findings: Urban areas have 2.7 to 3.5 times more geotagged tweet

users than we would expect
I Longley et al. (2015):

I Method: gets profiles of geotag tweet users in greater London area,
uses forename-surname matching to identify gender, age and
ethnicity to compare to (2011 UK) Census data

I Findings: overrepresentation of young males and white British users;
underrepresentation of middle-aged/older females, and of South
Asian, West Indian, and Chinese users

I Pew survey of location services (Zickuhr, 2013):
I n=1,178; ‘geosocial’ n=141; Twitter ‘geosocial’ n=1
I Lowest and middle income use most; lower use less, high use least;

more 18-26 year-olds, more Hispanic users
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Geotags in tweets

What geotags look like:

https://api.twitter.com/1.1/statuses/show/
123456789012345678.json

{
"created_at": "Wed Apr 01 00:47:05

+00002015",
"text": "This view tho \uE106\uE00E,
"user": {

"followers_count": 36000,
"friends_count": 25000,
"geo_enabled": true,

},
"geo": {

"type": "Point",
"coordinates":
[36.11570625,-115.17407114]

}
}



Geotags in tweets

About geotags:
I Latitude and longitude to the ten thousandth of a degree
I Automatically generated once user enables (unlike ‘location’)
I Accessible via Twitter’s Streaming API

I We used geobox [124.7625, 66.9326]W × [24.5210, 49.3845]N
I From April 1 to July 1, 2013, collected 144,877,685 geotagged

tweets, representing 2,612,876 unique twitter handles.

Twitter users sample the population. But the (public) API samples
Twitter.

I API queries for which matches exceed 1% of all tweets are
non-randomly sampled (Morstatter et al., 2013)

I 1.23% of total volume of tweets are geotagged (Liu et al., 2014)
I US accounts for ∼22% of all geotagged tweets (Morstatter et al.,

2013)
I 22%× 1.23% < 1%, so we believe we have everything
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US Census
Map data:

I Data are available per “block group”
I Block ⊂ Block Group ⊂ Tract ⊂ County ⊂ State
I 220,334 block groups (215,798 in contiguous US).
I Unique 12-digit “FIPS” codes
I 0.002 square miles to over 7,500 square miles. Designed to have

comparable populations (300 to 6,000 people).
I Block group “shape files” (map file format) are available from

Census
I Use Python shapely package to place tweets in block groups.

Demographic data:
I 2010 Decennial Census

I Tries to count everybody, not sample
I Population, Race, Gender, Age, Urban, etc. by block group

I American Community Survey (ACS)
I Done at intervals of 1 year (2013), 3 years (2011-2013), 5 years

(2009-2013)
I From sampling and inference; only 5-year ACS has block groups
I Use this to get median income, which is not in the Census
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Assigning unique locations to mobile users
The distribution of tweets per user is, as usual, highly skewed:

Tweets per user (log−log)
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Want to use the number of users, rather than the number of tweets. Use
‘plurality’ rule to assign users uniquely (Hecht and Stephens, 2014).

We also try filtering out users with below 5 geotagged tweets, and users
below 10 geotagged tweets. This yields subtly different results.
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A statistical test for random distribution over population

We want to test if users are randomly distributed over the US population.

What would it look like for something to be randomly distributed over
the population?

How about:

the quantity U is proportional to population P, plus some
mean-zero noise term ε that is proportional to the population.

+εP

Take a log transformation to stabilize the variance.

log U = log (αP + εP) = log
(
αP
(

1 +
ε

α

))
= logα+ log P + log

(
1 +

ε

α

)
Note that log

(
1 + ε

α

)
, very conveniently, now has mean zero. Call this ε′.
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A statistical test for random distribution over population

log U = logα+ log P + ε′ (1)

Now, what if we were to fit a linear model of the log population against
the log number of users?

log U = β0 + β1 log P + ε′ (2)

If eqn. (1) described the true data-generating process, eβ̂0 would be an
estimator of α, and β̂1 should be 1.

This gives us a concrete null hypothesis that we can test, H0 : β1 = 1.
We will fit the model of eqn (2) and see if we can reject this null.
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Validating the null model
Is this a good null model?

Validate by trying this model on the number of males in the population.
How good is the fit? We can calculate the true male ratio in our data,
.4915; will the model capture this? And will our model give a coefficient
1?

Dependent variable:
log(males) s.e.

Intercept -0.731∗ (0.002)
log(pop) 1.002∗ (0.0003)
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A 95% CI for the coefficient of log population is [1.001, 1.003]; 1 is
outside this, but this is without accounting for spatial autocorrelation.
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Spatial autocorrelation

Adjacent geographic units are not independent; there is spatial
autocorrelation. Measure this with Moran’s I,

I = n∑
i
∑

j wij

∑
i
∑

j wij(Xi − X )(Xj − X )∑
i(Xi − X )2

(3)

which is empirical covariance between adjacent units, appropriately
normalized. [wij ] = W is an n× n matrix of weights (adjacencies between
geographic units).

W is a substantive modeling choice (Gaetan and Guyon, 2012), but if no
prior knowledge, test out different options (Anselin et al., 2007). We try:

I Rook contiguity; shared edge only (can normalize rows by row sum)
I Queen contiguity; shared edge or vertex (again, can normalize rows)
I k-nearest neighbors (using block group centroid) for k = 2, ..., 8.

Look for spatial autocorrelation in the residuals of a linear model instead
of in individual variables (Anselin and Rey, 1991).
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Spatial errors model

With W, correct for spatial autocorrelation in a spatial errors model, a
type of simultaneous autoregressive (SAR) model.

Y = Xβ + u (4)

u = λWu + ε (5)

where u is the vector of correlated residuals, ε ∼ N (0, σ2I) are the
uncorrelated error terms, and λ is the strength of the spatial
autocorrelation (Anselin, 2002). Equivalently,

Y = Xβ + (I− λW)−1ε (6)

Implemented in R package spdep (Bivand and Piras, 2015; Bivand et al.,
2013a,b). Fits by finding the log determinant of |I− λW|; infeasible for
n = 215, 798.

Is Cholesky decomposition option, but that requires symmetric matrix,
limiting our choices of W.
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Model specification

I Following previous literature, we include covariates for:
I Black population, Asian population, Latino/Hispanic populations

(Mislove et al., 2011; Zickuhr, 2013)
I Age (Longley et al., 2015), binned by ages 10-17, 18-29, 30-49,

50-64, and 65+ (Zickuhr, 2013)
I Urban and rural populations (Hecht and Stephens, 2014; Zickuhr,

2013)
I Median income (Zickuhr, 2013)
I For all of these except median income, stabilize variance with a log

transformation and add-one smoothing.

I We introduce terms for
I Northern/eastern effect (demeaned latitudes and longitudes of block

group centroids)
I Coastal effect (squared terms for latitude and longitude)

I No analysis of sex as in Longley et al. (2015); Zickuhr (2013);
Mislove et al. (2011), as those use name-based inference or survey
data, but recall that sex is randomly distributed across block groups.
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Test of null hypothesis

Ignoring spatial autocorrelation, and testing H0 : β1 = 0 with OLS, we
get slope β̂1 = .4916 (.002996) and intercept β̂0 = −1.219 (.02143).
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Fitted values

1 is far outside the 95% confidence interval for β1 of [0.4857, 0.4975].
Same for only nonzero block groups, and >5, >10 tweet filters. No need
to worry about spatial autocorrelation; reject the null!

(Note that we no longer interpret α̂ = eβ̂0 ).
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Form of spatial autocorrelation
Values of Moran’s I in the bivariate regression:

Population vs Users Population vs Male
2nn .3699 .2336
4nn .3550 .2142
6nn .3398 .1996
8nn .3270 .1883

Rook .4166 (b)
.3992 (rn)

.2125 (b)

.2201 (rn)

Queen .4151 (b)
.3919 (rn)

.2097 (b)

.2154 (rn)

For the Rook contiguity case and the Queen contiguity case, binary (b)
and row-normalized (rw) weights give different values. (Nearly identical
results for different filter levels).

All weights pick up spatial autocorrelation. Cholesky decomposition
requires a symmetric matrix, so use binary Rook contiguity.
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Spatial errors model results

Dependent variable:
log(user+1) s.e.

log(population+1) -.01218 (.008081)
log(area) .1556∗ (.001760)
log(hispanic+1) .01533∗ (.002066)
log(asian+1) .1112∗ (.001576)
log(black+1) .04292∗ (.001576)
lat (demeaned) -.006992 (.0007052)
lat2 -1.641-e5 (9.505-e5)
long (demeaned) .02306∗ (.0002739)
long2 8.777-e5∗ (1.411-e5)
med income ($10K) .01661∗ (.0006857)
log(rural+1) -.05722∗ (.001096)
log(ages 10-17+1) -.09831∗ (.003712)
log(ages 18-29+1) .3916∗ (.004423)
log(ages 30-49+1) .06362∗ (.006731)
log(ages 50-64+1) -.1793∗ (.006953)
log(ages ≥65+1) .09675∗ (.003940)
Intercept 1.3382∗ (.1916)
Note: ∗p<.0001

• No more spatial autocorrelation in residuals
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• No more spatial autocorrelation in residuals
• After controlling for other factors, population loses

its significance (not so with OLS).

• Area is significant, and +1% area =⇒ +15.56%
geotag users. Size overcomes the effects of
population density (perhaps effect of tweeting on
highways?)

• +1% Hispanic/Latino population =⇒ +1.533%
geotag users. Direction, but not size, consistent with
survey results (Zickuhr, 2013).

• +1% Asian population =⇒ +11.12% geotag users.
• +1% Black population =⇒ +4.29% geotag users.

Contradicts survey results, but qualitative research
shows active community on Twitter (Clark, 2014;
Florini, 2014; Sharma, 2013).

• The latitude, both in linear and quadratic effects, is
not significant.

• Longitude is significant in both effects: block groups
further east having more geotag users, and second
block groups on both the east and west coasts have
more geotag users.
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survey results (Zickuhr, 2013).

• +1% Asian population =⇒ +11.12% geotag users.
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• +$10K median income =⇒ +1.66% geotag users.

• Tried to test for median income squared but got
computational singularity; visual inspection of plot
showed no evidence of nonlinear relationship, and
linear effect is weak.

• +1% rural population =⇒ -5.72% geotag users,
consistent with Hecht and Stephens (2014).

• +1% 18-29 year olds =⇒ +39.16% geotag users.
Consistent with survey results.

• +1% 50-64 year olds =⇒ -17.93% geotag users.
Consistent with survey results.

• Teenage population predicts fewer geotag users
(than excluded group, ages <10).

• Elderly population predicts more geotag users (than
excluded group, ages <10).

• (Intercept not meaningful for log dependent
variable.)
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Motivation
1. All maps of geotagged tweets look like maps of population density
2. LOTS of studies use geotagged tweets
3. Need for large-scale, multivariate, statistical work

Data
1. Geotags in tweets
2. US Census
3. Mobile users

Model
1. A statistical test for random distribution over population
2. Validating the null model
3. Spatial autocorrelation and spatial errors
4. Model specification

Results
1. Test of null hypothesis
2. Spatial autocorrelation
3. Spatial errors model results

Discussion
1. Limitations
2. Take-away
3. Future work



Limitations
I Doing things at scale gives lots of statistical power, but we lose the

ability to do meaningful visual diagnostics and find interesting
outliers

I We corrected for one type of misspecification, spatial
autocorrelation, but there is potentially unexplored structure in the
residuals

I Are other relevant models for dependent/spatial data, such as
disease mapping, conditional autoregressive (CAR) models, Gaussian
Process regression...

I ‘Plurality’ placement yields a few hundred block groups with more
users than population; need better way to uniquely locate

I Don’t account for foreign tourists (in 2013, 1 tourist for every 4.5
people in US)

I Still need assumption that demographics of a block group represent
the geotag users there

I Add-one smoothing can produce some artifacts
I We don’t look at time; we use data from 2010 but tweets from

2013, and geotag trends are almost certainly not stationary
I This is only for the US; doesn’t generalize to any other country



Take-away

What are our methodological recommendations?

I Geotagged tweets are not representative. Which means we can’t use
them to make valid inferences about any larger population.

I Researchers don’t need to stop using geotagged tweets, but we need
to stop assuming that results generalize to larger populations and
using this assumption as our driving motivation.

I If we want generalizability, the easiest way to probably to directly
demonstrate that we can infer a given external trend from tweets
(comes with its own problems...).

I We can (and should) still study geotagged tweets, Twitter users, and
Twitter...

as inherently interesting social and cultural phenomena.

I We need to take statistical approaches, and many relevant models
already exist.
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Future work

I Re-test with 2013 ACS 1-year estimates: incomplete and lower
resolution but more current

I Repeat analysis in other countries
I Filter out ‘non-personal’ users (Guo and Chen, 2014)
I Filter out foreign tourists by collecting all geotagged tweets or profile

info
I Find better ways to uniquely place users
I Model demographic differences in different levels of usage
I Apply other spatial models
I Long-term spatio-temporal modeling
I With knowledge of demographic biases, we could model

demographic changes



Thank you! Questions?

Momin M. Malik <momin.malik@cs.cmu.edu>
Hemank Lamba <hemank.lamba@cs.cmu.edu>
Constantine Nakos <cnakos@andrew.cmu.edu>
Jürgen Pfeffer <jpfeffer@cs.cmu.edu>

Slides at http://mominmalik.com/Malik_ICWSM2015_slides.pdf

<momin.malik@cs.cmu.edu>
<hemank.lamba@cs.cmu.edu>
<cnakos@andrew.cmu.edu>
<jpfeffer@cs.cmu.edu>
http://mominmalik.com/Malik_ICWSM2015_slides.pdf
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