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 Solid general resource 
  Read Ch. 7, “Machine Learning: The DL on ML” 
–  (Two mistakes; see 

https://mominmalik.com/broussard) 
  If you have time, read all of Part II (Ch. 5-9) 
  Also, a useful story in Ch. 3, “Hello, AI” 
–  “So, it’s not real AI?” he asked.  
–  “Oh, it’s real,” I said. “And it’s spectacular. But you 

know, don’t you, that there’s no simulated person 
inside the machine? Nothing like that exists. It’s 
computationally impossible.”  

–  His face fell. “I thought that’s what AI meant,” he 
said. “I heard about IBM Watson, and the 
computer that beat the champion at Go, and self-
driving cars. I thought they invented real AI.”  
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 The things everybody needs to know 

  Language: ‘Prediction’ (technical term) is not 
prediction (colloquial term); prediction is 
prospective, ‘prediction’ is retrospective.  

  Definitions: ‘Prediction’ is based on correlations 
  Validity: Correlations can overfit, and cross-validation 

only partially addresses 
  Paradox: The bias-variance tradeoff (a consequence of 

the definition) makes it possible for a ‘false’ model to 
predict better than a ‘true’ one 
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  If you relied on The Guardian, what sort of picture 
might you get? 

 Lots of “predict…” 
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 Predict… the future? 

PERSPECTIVE

1216

Fast-Track Zika Vaccine Development

n engl j med 375;13 nejm.org September 29, 2016

Predicting the Future

Predicting the Future — Big Data, Machine Learning,  
and Clinical Medicine
Ziad Obermeyer, M.D., and Ezekiel J. Emanuel, M.D., Ph.D.  

By now, it’s almost old news: 
big data will transform med-

icine. It’s essential to remember, 
however, that data by themselves 
are useless. To be useful, data 
must be analyzed, interpreted, and 
acted on. Thus, it is algorithms — 

not data sets — that will prove 
transformative. We believe, there-
fore, that attention has to shift to 
new statistical tools from the 
field of machine learning that 
will be critical for anyone practic-
ing medicine in the 21st century.

First, it’s important to under-
stand what machine learning is 
not. Most computer-based algo-
rithms in medicine are “expert 
systems” — rule sets encoding 
knowledge on a given topic, which 
are applied to draw conclusions 

ry agencies will pay particular at-
tention to preclinical safety and 
toxicity studies and assessments 
of unexpected adverse events dur-
ing clinical trials and after licen-
sure. The case for licensure may 
be established through tradition-
al clinical efficacy trials, but de-
clining case counts or an urgent 
need for intervention may neces-
sitate a different pathway. Alter-
natives include using efficacy data 
from studies in animals combined 
with human immunogenicity data 
or bridging to an as-yet-undefined 
immune correlate of protection. 
Human challenge studies have 
been proposed in order to augment 
information from efficacy trials, 
assist in exploring immune cor-
relates of protection, or generate 
efficacy data if natural transmis-
sion substantially declines. In the 
absence of a clear understanding 
of the frequency of adverse neu-
rologic outcomes or the persis-
tence of ZIKV in biologic fluids, 
however, human ZIKV challenge 
is ethically complex.

Other flavivirus vaccines have 
been licensed, including those 
against yellow fever (live attenu-
ated), Japanese encephalitis (inac-

tivated, live chimeric, live atten-
uated), tickborne encephalitis 
(inactivated), and dengue (live chi-
meric). Some have validated surro-
gates of protection, and all are 
based on neutralizing antibody. A 
neutralizing antibody titer of 1 in 
10 is the surrogate of protection 
for the Japanese and tickborne 
encephalitis vaccines; for yellow 
fever, the titer is between 1 in 10 
and 1 in 50. Preclinical ZIKV 
studies suggest that a titer of 1 in 
10 for mice and approximately 1 in 
100 for nonhuman primates pro-
tected against ZIKV challenge.1,2 
If these figures translate to hu-
mans, developing a ZIKV vaccine 
is very feasible.

The time required to develop a 
safe, efficacious ZIKV vaccine will 
be determined by prior experience 
with the selected technology, the 
continuation of outbreaks, and the 
required scale-up of manufactur-
ing. Ultimately, developing, licens-
ing, and deploying a vaccine ca-
pable of affecting the current 
epidemic will require seamless 
coordination among developers, 
regulatory agencies, the WHO, and 
national health authorities, along 
with a robust monetary commit-

ment from governments and fund-
ing agencies.

The views expressed in this article do 
not necessarily represent those of the U.S. 
Army or the Department of Defense.

Disclosure forms provided by the au-
thors are available at NEJM.org.

From the Walter Reed Army Institute of Re-
search, Silver Spring, MD (S.J.T.); Sanofi 
Pasteur, Lyon, France (M.L., N.A.C.J.); and 
the Sealy Center for Vaccine Development 
and Department of Pathology, University of 
Texas Medical Branch, Galveston (A.D.T.B.). 
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Predicting the Future With Social Media
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Abstract—In recent years, social media has become ubiquitous
and important for social networking and content sharing. And
yet, the content that is generated from these websites remains
largely untapped. In this paper, we demonstrate how social media
content can be used to predict real-world outcomes. In particular,
we use the chatter from Twitter.com to forecast box-office
revenues for movies. We show that a simple model built from
the rate at which tweets are created about particular topics can
outperform market-based predictors. We further demonstrate
how sentiments extracted from Twitter can be further utilized to
improve the forecasting power of social media.

I. INTRODUCTION

Social media has exploded as a category of online discourse
where people create content, share it, bookmark it and network
at a prodigious rate. Examples include Facebook, MySpace,
Digg, Twitter and JISC listservs on the academic side. Because
of its ease of use, speed and reach, social media is fast
changing the public discourse in society and setting trends
and agendas in topics that range from the environment and
politics to technology and the entertainment industry.

Since social media can also be construed as a form of
collective wisdom, we decided to investigate its power at
predicting real-world outcomes. Surprisingly, we discovered
that the chatter of a community can indeed be used to make
quantitative predictions that outperform those of artificial
markets. These information markets generally involve the
trading of state-contingent securities, and if large enough and
properly designed, they are usually more accurate than other
techniques for extracting diffuse information, such as surveys
and opinions polls. Specifically, the prices in these markets
have been shown to have strong correlations with observed
outcome frequencies, and thus are good indicators of future
outcomes [4], [5].

In the case of social media, the enormity and high vari-
ance of the information that propagates through large user
communities presents an interesting opportunity for harnessing
that data into a form that allows for specific predictions
about particular outcomes, without having to institute market
mechanisms. One can also build models to aggregate the
opinions of the collective population and gain useful insights
into their behavior, while predicting future trends. Moreover,
gathering information on how people converse regarding par-
ticular products can be helpful when designing marketing and
advertising campaigns [1], [3].

This paper reports on such a study. Specifically we consider
the task of predicting box-office revenues for movies using
the chatter from Twitter, one of the fastest growing social
networks in the Internet. Twitter 1, a micro-blogging network,
has experienced a burst of popularity in recent months leading
to a huge user-base, consisting of several tens of millions of
users who actively participate in the creation and propagation
of content.

We have focused on movies in this study for two main
reasons.

• The topic of movies is of considerable interest among
the social media user community, characterized both by
large number of users discussing movies, as well as a
substantial variance in their opinions.

• The real-world outcomes can be easily observed from
box-office revenue for movies.

Our goals in this paper are as follows. First, we assess how
buzz and attention is created for different movies and how that
changes over time. Movie producers spend a lot of effort and
money in publicizing their movies, and have also embraced
the Twitter medium for this purpose. We then focus on the
mechanism of viral marketing and pre-release hype on Twitter,
and the role that attention plays in forecasting real-world box-
office performance. Our hypothesis is that movies that are well
talked about will be well-watched.

Next, we study how sentiments are created, how positive and
negative opinions propagate and how they influence people.
For a bad movie, the initial reviews might be enough to
discourage others from watching it, while on the other hand, it
is possible for interest to be generated by positive reviews and
opinions over time. For this purpose, we perform sentiment
analysis on the data, using text classifiers to distinguish
positively oriented tweets from negative.

Our chief conclusions are as follows:
• We show that social media feeds can be effective indica-

tors of real-world performance.
• We discovered that the rate at which movie tweets

are generated can be used to build a powerful model
for predicting movie box-office revenue. Moreover our
predictions are consistently better than those produced
by an information market such as the Hollywood Stock
Exchange, the gold standard in the industry [4].

1http://www.twitter.com
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  ‘Prediction’ is not prediction! 

“It’s not prediction at all! I 
have not found a single 
paper predicting a future 
result. All of them claim 
that a prediction could 
have been made; i.e. they 
are post-hoc analysis and, 
needless to say, negative 
results are rare to find.” 
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“I Wanted to Predict Elections with Twitter

and all I got was this Lousy Paper”

A Balanced Survey on Election Prediction using

Twitter Data

Daniel Gayo-Avello
dani@uniovi.es

@PFCdgayo

Department of Computer Science - University of Oviedo (Spain)

May 1, 2012

Abstract

Predicting X from Twitter is a popular fad within the Twitter research
subculture. It seems both appealing and relatively easy. Among such kind
of studies, electoral prediction is maybe the most attractive, and at this

moment there is a growing body of literature on such a topic.
This is not only an interesting research problem but, above all, it is

extremely difficult. However, most of the authors seem to be more inter-

ested in claiming positive results than in providing sound and reproducible
methods.

It is also especially worrisome that many recent papers seem to only

acknowledge those studies supporting the idea of Twitter predicting elec-
tions, instead of conducting a balanced literature review showing both
sides of the matter.

After reading many of such papers I have decided to write such a
survey myself. Hence, in this paper, every study relevant to the matter of
electoral prediction using social media is commented.

From this review it can be concluded that the predictive power of
Twitter regarding elections has been greatly exaggerated, and that hard
research problems still lie ahead.

Introduction

In the last two years a number of papers have suggested that Twitter data has
an impressive predictive power. Apparently, everything from the stock market

1
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At FORUM AI MEETS NS 

understanding that are known to be adequate in a scientific sense. 
It follows that he cannot know that certain people at certain times 
do not understand in Parry-or Eliza-like ways. That is to say, he 
has no way of knowing that we do not ourselves sometimes function 
by means of "clever tricks". 

Finally, of course we i~arpret responses "in a manner which 
may indeed allow (us) to conclude that (we) are being 'understood' 
. . . "  We do it wlfh people, and we do it with machines, because 
that is what understanding is about, ar~how could the world be 
otherwise? The basic flaw in McLeod's position is that, like a lot of 
people, scientific and lay, he believes the (].) there really is some 
definitive process or feeling called UNDERSTANDING or BEING- 
UNDERSTOOD, and (2) that we can know for absolute certainty when 
we experience it, and (3) we can therefore contrast this feeling 
with one we have about a machine that. "appears" to understand. 
These assumptions are, alas, false, at.least from any scientific point 
of view, and the fact that Humbert Dreyfus has given a 
sophisticated philosophical defense [W&zt Com.pu.ter$ Can.'t Do, 
Harper and Row, New York, 1972.] of a position very like that of 
(1)-(3) above, does not make it any more plausible to anyone who 
believes that the only serious test we can have is how a system 
bohc~ues. 

If one sticks to this simple, but firm, principle of machine 
performance, then McLeod's position will only make sense if and 
when he can tell us what it would be like to know of any machine 
that it red ly  understood, and didn't just ~em to do so. I do not 
believe that this distinction makes much sense, largely because (1)- 
(3) are false assumptions, yet they are the unexamined foundations 
of those who argue like Mr. McLeod. 

ARTIFICIAL INTELLIGENCE MEETS NATURAL STUPIDITY 
Drew McDermoH 

MIT At Lab Cambridge, Mass 02139 

As a field, artificial intelligence has always been on the border 
of respectability, and therefore on the border of crackpottery. 
Many critics <Dreyfus, 1972>, <Lighthill, 1973> have urged that we 
are over the border. We have been very defensive toward this 
charge, drawing ourselves up with dignity when it is made and 
folding the cloak of Science about us. On the other hand, in private, 
we have been justifiably proud of our wil#ingness to explore weird 
ideas, because pursuing them is the only way to make progress. 

Unfortunately, the necessity for speculation has combined with 
the culture of the hacker in computer science <Weizenbaum, 1975> 
to cripple our self-discipline. In a young field, ,~elf-discipline is not 
necessarily a virtue, but we are not getting any younger. In the 
past few years, our tolerance of sloppy thinking has l ed  us to 
repeat many mistakes over and over. If we are to retain any 
credibility, this should stop. 

This paper is an effort to ridicule some of these mistakes. 
Almost everyone I know should find himself the target at some 
point or other; if you don't, you are encouraged to write up your 
own favorite fault. The three described here I suffer from myself. 
I hope self-ridicule will be a complete catharsis, but t doubt it. Bad 
tendencies can be very deep-rooted. Remember, though, if we can't 
criticize ourselves, someone else will save us the trouble. 

Acknow~dEmer~t-- I thank the AI Lab Playroom crowd for 
constructive play. 

Wishful Mnemonics 
A major source of simple-mindedness in AI programs is the use 

of mnemonics like "UNDERSTAND" or "GOAL" to refer to programs 
and data structures. This practice has been inherited from more 

traditional programming applications, in which it is liberating and 
enlightening to be able to refer to program structures by their 
purposes. Indeed, part of the thrust of the structured programming 
movement is to program entirely in terms of purposes at one level 
before implementing them by the most converiient of the 
(presumably many) alternative lower-level constructs. 

However, in At, our programs to a great degree are problems 
rather than solutions. If a researcher tries to write an 
"understanding" program, it isn't because he has thought of a better 
way of implementing this well-understood task, but because he 
thinks he can come closer to writing the [/~rs~ implementation. If he 
calls the main loop of his program "UNDERSTAND '~, he i s  (unt i l  
proven innocent) merely begging the question. He may mislead a lot 
of people, most prominently himself, and enrage a lot of others. 

What he should do instead is refer to this main loop as 
"G0034", and see if he can corwi.nw;e himself or anyone else that 
G0034 implements some part of understanding. Or he could give i t  
a name that reveals its intrinsic properties, like NODE-NET- 
INTERSECTION-FINDER, it being the substance of his theory that 
finding intersections in networks of nodes constitutes 
understanding. If Quillian <1969> had called his program the 
"Teachable Language Node Net Intersection Finder", he would have 
saved us some reading. (Except for those of us fanatic about 
finding the part on teachability.) 

Many instructive examples of wishful mnemonics by AI 
reseai'chers come to mind once you see the point. Remember GPS? 
<Ernst and Newell, 1969> By now, "GPS" is a colorless term 
denoting a particularly stupid program to solve puzzles. But i t  
originally meant "General Problem Solver", which caused everybody 
a lot of needless excitement and distraction. It should have been 
called LFGNS --  "Local-Feature-Guided Network Searcher". 

Compare the mnemonics in Planner <Hewitt,1972> with those in 
Conniver <Sussman and McDermott, 1972>: 

Planner ~ n g i y e r  
GOAL FETCH & TRY-NEXT 
CONSEQUENT IF-NEEDED 
ANTECEDENT IF-AODED 
THEOREM METHOD 
ASSERT ADD 

It Js so much harder to write programs using the farina on the right! 
When you say (GOAL . . . ) ,  you can j:ust feel the enormous power at 
your fingertips. It is, of course, an illusion. 

Of course, Conniver has some glaring wishful primitives, too. 
Calling "multiple data bases" CONTEXTS was dumb. It implies that, 
say, sentence understanding in context is really easy in this system. 

LISP's mnemonics are excellent in this regard. <Levin at. el., 
1965> What if atomic symbols had been called "concepts", or CONS 
had been called ASSOCIATE? As it is, the programmer has no debts 
to pay to the system. He can build whatever he likes. There are 
some minor faults; "property lists" are a little risky~ but bY now the 
term is sanitized. 

Resolution theorists have been pret ty  good about wishful 
mnemonics. They thrive on hitherto meaningless words like 
RESOLVE and PARAtvIODULATE, which can only have their humble, 
technical meaning. There are actually quite few pretensions in the 
resolution literature. <Robinson, 1965> Unfortunately, at the top of 
their intellectual edifice stand the word "deduction". This is uary 
wishful, but not entirely their fault. The logicians who first misused 
the term (e.g., in the "deduction" theorem) didn't have our problems; 
pure resolution theorists don't either. Unfortunately, too many A] 
researchers took them at their word and assumed that deduction, 
like payroll processing, had been tamed. 

Of course, as in many such cases, the only consequence in the 
long run was that "deduction" changed in meaning, to become 
something narrow, technical, and not e little sordid. 
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your fingertips. It is, of course, an illusion. 

Of course, Conniver has some glaring wishful primitives, too. 
Calling "multiple data bases" CONTEXTS was dumb. It implies that, 
say, sentence understanding in context is really easy in this system. 

LISP's mnemonics are excellent in this regard. <Levin at. el., 
1965> What if atomic symbols had been called "concepts", or CONS 
had been called ASSOCIATE? As it is, the programmer has no debts 
to pay to the system. He can build whatever he likes. There are 
some minor faults; "property lists" are a little risky~ but bY now the 
term is sanitized. 

Resolution theorists have been pret ty  good about wishful 
mnemonics. They thrive on hitherto meaningless words like 
RESOLVE and PARAtvIODULATE, which can only have their humble, 
technical meaning. There are actually quite few pretensions in the 
resolution literature. <Robinson, 1965> Unfortunately, at the top of 
their intellectual edifice stand the word "deduction". This is uary 
wishful, but not entirely their fault. The logicians who first misused 
the term (e.g., in the "deduction" theorem) didn't have our problems; 
pure resolution theorists don't either. Unfortunately, too many A] 
researchers took them at their word and assumed that deduction, 
like payroll processing, had been tamed. 

Of course, as in many such cases, the only consequence in the 
long run was that "deduction" changed in meaning, to become 
something narrow, technical, and not e little sordid. 

Page 4 SIGART Newsletter No. 57 Apt't# 1976 

At FORUM AI MEETS NS 

understanding that are known to be adequate in a scientific sense. 
It follows that he cannot know that certain people at certain times 
do not understand in Parry-or Eliza-like ways. That is to say, he 
has no way of knowing that we do not ourselves sometimes function 
by means of "clever tricks". 

Finally, of course we i~arpret responses "in a manner which 
may indeed allow (us) to conclude that (we) are being 'understood' 
. . . "  We do it wlfh people, and we do it with machines, because 
that is what understanding is about, ar~how could the world be 
otherwise? The basic flaw in McLeod's position is that, like a lot of 
people, scientific and lay, he believes the (].) there really is some 
definitive process or feeling called UNDERSTANDING or BEING- 
UNDERSTOOD, and (2) that we can know for absolute certainty when 
we experience it, and (3) we can therefore contrast this feeling 
with one we have about a machine that. "appears" to understand. 
These assumptions are, alas, false, at.least from any scientific point 
of view, and the fact that Humbert Dreyfus has given a 
sophisticated philosophical defense [W&zt Com.pu.ter$ Can.'t Do, 
Harper and Row, New York, 1972.] of a position very like that of 
(1)-(3) above, does not make it any more plausible to anyone who 
believes that the only serious test we can have is how a system 
bohc~ues. 

If one sticks to this simple, but firm, principle of machine 
performance, then McLeod's position will only make sense if and 
when he can tell us what it would be like to know of any machine 
that it red ly  understood, and didn't just ~em to do so. I do not 
believe that this distinction makes much sense, largely because (1)- 
(3) are false assumptions, yet they are the unexamined foundations 
of those who argue like Mr. McLeod. 

ARTIFICIAL INTELLIGENCE MEETS NATURAL STUPIDITY 
Drew McDermoH 

MIT At Lab Cambridge, Mass 02139 

As a field, artificial intelligence has always been on the border 
of respectability, and therefore on the border of crackpottery. 
Many critics <Dreyfus, 1972>, <Lighthill, 1973> have urged that we 
are over the border. We have been very defensive toward this 
charge, drawing ourselves up with dignity when it is made and 
folding the cloak of Science about us. On the other hand, in private, 
we have been justifiably proud of our wil#ingness to explore weird 
ideas, because pursuing them is the only way to make progress. 

Unfortunately, the necessity for speculation has combined with 
the culture of the hacker in computer science <Weizenbaum, 1975> 
to cripple our self-discipline. In a young field, ,~elf-discipline is not 
necessarily a virtue, but we are not getting any younger. In the 
past few years, our tolerance of sloppy thinking has l ed  us to 
repeat many mistakes over and over. If we are to retain any 
credibility, this should stop. 

This paper is an effort to ridicule some of these mistakes. 
Almost everyone I know should find himself the target at some 
point or other; if you don't, you are encouraged to write up your 
own favorite fault. The three described here I suffer from myself. 
I hope self-ridicule will be a complete catharsis, but t doubt it. Bad 
tendencies can be very deep-rooted. Remember, though, if we can't 
criticize ourselves, someone else will save us the trouble. 

Acknow~dEmer~t-- I thank the AI Lab Playroom crowd for 
constructive play. 

Wishful Mnemonics 
A major source of simple-mindedness in AI programs is the use 

of mnemonics like "UNDERSTAND" or "GOAL" to refer to programs 
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before implementing them by the most converiient of the 
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understanding. If Quillian <1969> had called his program the 
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saved us some reading. (Except for those of us fanatic about 
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<Ernst and Newell, 1969> By now, "GPS" is a colorless term 
denoting a particularly stupid program to solve puzzles. But i t  
originally meant "General Problem Solver", which caused everybody 
a lot of needless excitement and distraction. It should have been 
called LFGNS --  "Local-Feature-Guided Network Searcher". 

Compare the mnemonics in Planner <Hewitt,1972> with those in 
Conniver <Sussman and McDermott, 1972>: 

Planner ~ n g i y e r  
GOAL FETCH & TRY-NEXT 
CONSEQUENT IF-NEEDED 
ANTECEDENT IF-AODED 
THEOREM METHOD 
ASSERT ADD 

It Js so much harder to write programs using the farina on the right! 
When you say (GOAL . . . ) ,  you can j:ust feel the enormous power at 
your fingertips. It is, of course, an illusion. 

Of course, Conniver has some glaring wishful primitives, too. 
Calling "multiple data bases" CONTEXTS was dumb. It implies that, 
say, sentence understanding in context is really easy in this system. 

LISP's mnemonics are excellent in this regard. <Levin at. el., 
1965> What if atomic symbols had been called "concepts", or CONS 
had been called ASSOCIATE? As it is, the programmer has no debts 
to pay to the system. He can build whatever he likes. There are 
some minor faults; "property lists" are a little risky~ but bY now the 
term is sanitized. 

Resolution theorists have been pret ty  good about wishful 
mnemonics. They thrive on hitherto meaningless words like 
RESOLVE and PARAtvIODULATE, which can only have their humble, 
technical meaning. There are actually quite few pretensions in the 
resolution literature. <Robinson, 1965> Unfortunately, at the top of 
their intellectual edifice stand the word "deduction". This is uary 
wishful, but not entirely their fault. The logicians who first misused 
the term (e.g., in the "deduction" theorem) didn't have our problems; 
pure resolution theorists don't either. Unfortunately, too many A] 
researchers took them at their word and assumed that deduction, 
like payroll processing, had been tamed. 

Of course, as in many such cases, the only consequence in the 
long run was that "deduction" changed in meaning, to become 
something narrow, technical, and not e little sordid. 
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 Proposal: More precise language 

Predict the likelihood: Calculate the likelihood 
Predict the risk, predict the probability: 
Estimate the risk, estimate the probability 
Prediction, predicted: Fitted value, fitted 
We predict: We detect, we classify, we model 
X predicts Y: X is correlated with Y 
X predicts Y, ceteris paribus (partial correlation): 
X is associated with Y 
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 Proposal: Use alternatives 

Retrodiction 
Backtesting (retrodiction for testing) 
Hindcasting (backtesting for forecasting) 

 
 
 
  

  In-sample  vs. 
  Interpolation  vs. 
  Diagnosis  vs. 
  Retrospective  vs. 

  Out of-sample 
  Extrapolation 
  Prognosis 
  Prospective 
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  (Language not enough: mechanics matter) 

Pseudo-Mathematics and Financial
Charlatanism: The Effects of
Backtest Overfitting on
Out-of-Sample Performance
David H. Bailey, Jonathan M. Borwein,
Marcos López de Prado, and Qiji Jim Zhu

Another thing I must point out is that you cannot
prove a vague theory wrong. […] Also, if the process
of computing the consequences is indefinite, then
with a little skill any experimental result can be
made to look like the expected consequences.

—Richard Feynman [1964]

Introduction
A backtest is a historical simulation of an algo-
rithmic investment strategy. Among other things,
it computes the series of profits and losses that
such strategy would have generated had that al-
gorithm been run over that time period. Popular
performance statistics, such as the Sharpe ratio
or the Information ratio, are used to quantify the
backtested strategy’s return on risk. Investors
typically study those backtest statistics and then
allocate capital to the best performing scheme.

Regarding the measured performance of a
backtested strategy, we have to distinguish between
two very different readings: in-sample (IS) and out-
of-sample (OOS). The IS performance is the one
simulated over the sample used in the design of
the strategy (also known as “learning period” or

David H. Bailey is retired from Lawrence Berkeley National
Laboratory. He is a Research Fellow at the University of Cal-
ifornia, Davis, Department of Computer Science. His email
address is david@davidhbailey.com.

Jonathan M. Borwein is Laureate Professor of Mathematics
at the University of Newcastle, Australia, and a Fellow of the
Royal Society of Canada, the Australian Academy of Science,
and the AAAS. His email address is jonathan.borwein@
newcastle.edu.au.

Marcos López de Prado is Senior Managing Director at
Guggenheim Partners, New York, and Research Affiliate at
Lawrence Berkeley National Laboratory. His email address
is lopezdeprado@lbl.gov.

Qiji Jim Zhu is Professor of Mathematics at Western Michi-
gan University. His email address is zhu@wmich.edu.

DOI: http://dx.doi.org/10.1090/noti1105

“training set” in the machine-learning literature).
The OOS performance is simulated over a sample
not used in the design of the strategy (a.k.a. “testing
set”). A backtest is realistic when the IS performance
is consistent with the OOS performance.

When an investor receives a promising backtest
from a researcher or portfolio manager, one of
her key problems is to assess how realistic that
simulation is. This is because, given any financial
series, it is relatively simple to overfit an investment
strategy so that it performs well IS.

Overfitting is a concept borrowed from ma-
chine learning and denotes the situation when a
model targets particular observations rather than
a general structure. For example, a researcher
could design a trading system based on some
parameters that target the removal of specific
recommendations that she knows led to losses
IS (a practice known as “data snooping”). After a
few iterations, the researcher will come up with
“optimal parameters”, which profit from features
that are present in that particular sample but may
well be rare in the population.

Recent computational advances allow invest-
ment managers to methodically search through
thousands or even millions of potential options for
a profitable investment strategy. In many instances,
that search involves a pseudo-mathematical ar-
gument which is spuriously validated through a
backtest. For example, consider a time series of
daily prices for a stock X. For every day in the
sample, we can compute one average price of
that stock using the previous m observations x̄m
and another average price using the previous n
observations x̄n, where m < n. A popular invest-
ment strategy called “crossing moving averages”
consists of owning X whenever x̄m > x̄n. Indeed,
since the sample size determines a limited number
of parameter combinations thatm and n can adopt,

458 Notices of the AMS Volume 61, Number 5
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 Definitions: ‘Prediction’ is correlation, not 
causation 
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 Prediction is correlation 

  Prediction = “Fitted 
value” minimizing loss 
  L(y, f(x)) = (y – f(x))2 
  Spurious (non-

causal) correlations 
can fit really well! 
  But such fits fall apart 

if the context changes 
(Google Flu Trends) 

www.sciencemag.org    SCIENCE    VOL 343    14 MARCH 2014 1203

POLICYFORUM

           I
n February 2013, Google Flu 
Trends (GFT) made headlines 
but not for a reason that Google 

executives or the creators of the fl u 
tracking system would have hoped. 
Nature reported that GFT was pre-
dicting more than double the pro-
portion of doctor visits for influ-
enza-like illness (ILI) than the Cen-
ters for Disease Control and Preven-
tion (CDC), which bases its esti-
mates on surveillance reports from 
laboratories across the United States 
( 1,  2). This happened despite the fact 
that GFT was built to predict CDC 
reports. Given that GFT is often held 
up as an exemplary use of big data 
( 3,  4), what lessons can we draw 
from this error?

The problems we identify are 
not limited to GFT. Research on 
whether search or social media can 
predict x has become common-
place ( 5– 7) and is often put in sharp contrast 
with traditional methods and hypotheses. 
Although these studies have shown the 
value of these data, we are far from a place 
where they can supplant more traditional 
methods or theories ( 8). We explore two 
issues that contributed to GFT’s mistakes—
big data hubris and algorithm dynamics—
and offer lessons for moving forward in the 
big data age.

Big Data Hubris

“Big data hubris” is the often implicit 
assumption that big data are a substitute 
for, rather than a supplement to, traditional 
data collection and analysis. Elsewhere, we 
have asserted that there are enormous scien-
tifi c possibilities in big data ( 9– 11). How-
ever, quantity of data does not mean that 
one can ignore foundational issues of mea-
surement and construct validity and reli-

ability and dependencies among data (12). 
The core challenge is that most big data that 
have received popular attention are not the 
output of instruments designed to produce 
valid and reliable data amenable for scien-
tifi c analysis.

The initial version of GFT was a par-
ticularly problematic marriage of big and 
small data. Essentially, the methodology 
was to fi nd the best matches among 50 mil-
lion search terms to fit 1152 data points 
( 13). The odds of fi nding search terms that 
match the propensity of the fl u but are struc-
turally unrelated, and so do not predict the 
future, were quite high. GFT developers, 
in fact, report weeding out seasonal search 
terms unrelated to the fl u but strongly corre-
lated to the CDC data, such as those regard-
ing high school basketball ( 13). This should 
have been a warning that the big data were 
overfi tting the small number of cases—a 
standard concern in data analysis. This ad 
hoc method of throwing out peculiar search 
terms failed when GFT completely missed 
the nonseasonal 2009 infl uenza A–H1N1 
pandemic ( 2,  14). In short, the initial ver-
sion of GFT was part flu detector, part 
winter detector. GFT engineers updated 
the algorithm in 2009, and this model has 

run ever since, with a few changes 
announced in October 2013 ( 10, 
 15).

Although not widely reported 
until 2013, the new GFT has been 
persistently overestimating flu 
prevalence for a much longer time. 
GFT also missed by a very large 
margin in the 2011–2012 fl u sea-
son and has missed high for 100 out 
of 108 weeks starting with August 
2011 (see the graph ). These errors 
are not randomly distributed. For 
example, last week’s errors predict 
this week’s errors (temporal auto-
correlation), and the direction and 
magnitude of error varies with the 
time of year (seasonality). These 
patterns mean that GFT overlooks 
considerable information that 
could be extracted by traditional 
statistical methods. 

Even after GFT was updated 
in 2009, the comparative value of the algo-
rithm as a stand-alone fl u monitor is ques-
tionable. A study in 2010 demonstrated that 
GFT accuracy was not much better than 
a fairly simple projection forward using 
already available (typically on a 2-week lag) 
CDC data ( 4). The comparison has become 
even worse since that time, with lagged 
models significantly outperforming GFT 
(see the graph). Even 3-week-old CDC data 
do a better job of projecting current fl u prev-
alence than GFT [see supplementary mate-
rials (SM)].

Considering the large number of 
approaches that provide inference on infl u-
enza activity ( 16– 19), does this mean that 
the current version of GFT is not useful? 
No, greater value can be obtained by com-
bining GFT with other near–real-time 
health data ( 2,  20). For example, by com-
bining GFT and lagged CDC data, as well 
as dynamically recalibrating GFT, we can 
substantially improve on the performance 
of GFT or the CDC alone (see the chart). 
This is no substitute for ongoing evaluation 
and improvement, but, by incorporating this 
information, GFT could have largely healed 
itself and would have likely remained out of 
the headlines.

The Parable of Google Flu: 

Traps in Big Data Analysis

BIG DATA
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Large errors in fl u prediction were largely 

avoidable, which offers lessons for the use 

of big data.
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2001, Vol. 16, No. 3, 199–231

Statistical Modeling: The Two Cultures
Leo Breiman

Abstract. There are two cultures in the use of statistical modeling to
reach conclusions from data. One assumes that the data are generated
by a given stochastic data model. The other uses algorithmic models and
treats the data mechanism as unknown. The statistical community has
been committed to the almost exclusive use of data models. This commit-
ment has led to irrelevant theory, questionable conclusions, and has kept
statisticians from working on a large range of interesting current prob-
lems. Algorithmic modeling, both in theory and practice, has developed
rapidly in fields outside statistics. It can be used both on large complex
data sets and as a more accurate and informative alternative to data
modeling on smaller data sets. If our goal as a field is to use data to
solve problems, then we need to move away from exclusive dependence
on data models and adopt a more diverse set of tools.

1. INTRODUCTION

Statistics starts with data. Think of the data as
being generated by a black box in which a vector of
input variables x (independent variables) go in one
side, and on the other side the response variables y
come out. Inside the black box, nature functions to
associate the predictor variables with the response
variables, so the picture is like this:

y xnature

There are two goals in analyzing the data:

Prediction. To be able to predict what the responses
are going to be to future input variables;
Information. To extract some information about
how nature is associating the response variables
to the input variables.

There are two different approaches toward these
goals:

The Data Modeling Culture

The analysis in this culture starts with assuming
a stochastic data model for the inside of the black
box. For example, a common data model is that data
are generated by independent draws from

response variables = f(predictor variables,
random noise, parameters)

Leo Breiman is Professor, Department of Statistics,
University of California, Berkeley, California 94720-
4735 (e-mail: leo@stat.berkeley.edu).

The values of the parameters are estimated from
the data and the model then used for information
and/or prediction. Thus the black box is filled in like
this:

y xlinear regression 
logistic regression
Cox model

Model validation. Yes–no using goodness-of-fit
tests and residual examination.
Estimated culture population. 98% of all statisti-
cians.

The Algorithmic Modeling Culture

The analysis in this culture considers the inside of
the box complex and unknown. Their approach is to
find a function f!x"—an algorithm that operates on
x to predict the responses y. Their black box looks
like this:

y xunknown

decision trees
neural nets

Model validation. Measured by predictive accuracy.
Estimated culture population. 2% of statisticians,
many in other fields.

In this paper I will argue that the focus in the
statistical community on data models has:

• Led to irrelevant theory and questionable sci-
entific conclusions;
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 “To explain or to predict?” 

  Under this notion of 
prediction, 
“prediction” becomes 
its own task 
  The traditional task is 

information, or 
explanation 
  “y-hat” versus “beta-

hat” problems 
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To Explain or to Predict?
Galit Shmueli

Abstract. Statistical modeling is a powerful tool for developing and testing
theories by way of causal explanation, prediction, and description. In many
disciplines there is near-exclusive use of statistical modeling for causal ex-
planation and the assumption that models with high explanatory power are
inherently of high predictive power. Conflation between explanation and pre-
diction is common, yet the distinction must be understood for progressing
scientific knowledge. While this distinction has been recognized in the phi-
losophy of science, the statistical literature lacks a thorough discussion of the
many differences that arise in the process of modeling for an explanatory ver-
sus a predictive goal. The purpose of this article is to clarify the distinction
between explanatory and predictive modeling, to discuss its sources, and to
reveal the practical implications of the distinction to each step in the model-
ing process.

Key words and phrases: Explanatory modeling, causality, predictive mod-
eling, predictive power, statistical strategy, data mining, scientific research.

1. INTRODUCTION

Looking at how statistical models are used in dif-
ferent scientific disciplines for the purpose of theory
building and testing, one finds a range of perceptions
regarding the relationship between causal explanation
and empirical prediction. In many scientific fields such
as economics, psychology, education, and environmen-
tal science, statistical models are used almost exclu-
sively for causal explanation, and models that possess
high explanatory power are often assumed to inher-
ently possess predictive power. In fields such as natural
language processing and bioinformatics, the focus is on
empirical prediction with only a slight and indirect re-
lation to causal explanation. And yet in other research
fields, such as epidemiology, the emphasis on causal
explanation versus empirical prediction is more mixed.
Statistical modeling for description, where the purpose
is to capture the data structure parsimoniously, and
which is the most commonly developed within the field
of statistics, is not commonly used for theory building
and testing in other disciplines. Hence, in this article I

Galit Shmueli is Associate Professor of Statistics,
Department of Decision, Operations and Information
Technologies, Robert H. Smith School of Business,
University of Maryland, College Park, Maryland 20742,
USA (e-mail: gshmueli@umd.edu).

focus on the use of statistical modeling for causal ex-
planation and for prediction. My main premise is that
the two are often conflated, yet the causal versus pre-
dictive distinction has a large impact on each step of the
statistical modeling process and on its consequences.
Although not explicitly stated in the statistics method-
ology literature, applied statisticians instinctively sense
that predicting and explaining are different. This article
aims to fill a critical void: to tackle the distinction be-
tween explanatory modeling and predictive modeling.

Clearing the current ambiguity between the two is
critical not only for proper statistical modeling, but
more importantly, for proper scientific usage. Both ex-
planation and prediction are necessary for generating
and testing theories, yet each plays a different role in
doing so. The lack of a clear distinction within statistics
has created a lack of understanding in many disciplines
of the difference between building sound explanatory
models versus creating powerful predictive models, as
well as confusing explanatory power with predictive
power. The implications of this omission and the lack
of clear guidelines on how to model for explanatory
versus predictive goals are considerable for both scien-
tific research and practice and have also contributed to
the gap between academia and practice.

I start by defining what I term explaining and pre-
dicting. These definitions are chosen to reflect the dis-
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M achines are increasingly doing “intelligent” things: Facebook recognizes 
faces in photos, Siri understands voices, and Google translates websites. 
The fundamental insight behind these breakthroughs is as much statis-

tical as computational. Machine intelligence became possible once researchers 
stopped approaching intelligence tasks procedurally and began tackling them 
empirically. Face recognition algorithms, for example, do not consist of hard-wired 
rules to scan for certain pixel combinations, based on human understanding of 
what constitutes a face. Instead, these algorithms use a large dataset of photos 
labeled as having a face or not to estimate a function f (x) that predicts the pres-
ence y of a face from pixels x. This similarity to econometrics raises questions: Are 
these algorithms merely applying standard techniques to novel and large datasets? 
If there are fundamentally new empirical tools, how do they fit with what we know? 
As empirical economists, how can we use them?1 

We present a way of thinking about machine learning that gives it its own place 
in the econometric toolbox. Central to our understanding is that machine learning 

1 In this journal, Varian (2014) provides an excellent introduction to many of the more novel tools 
and “tricks” from machine learning, such as decision trees or cross-validation. Einav and Levin (2014) 
describe big data and economics more broadly. Belloni, Chernozhukov, and Hanson (2014) present an 
econometrically thorough introduction on how LASSO (and close cousins) can be used for inference in 
high-dimensional data. Athey (2015) provides a brief overview of how machine learning relates to causal 
inference.
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Their email addresses are mullain@fas.harvard.edu and jspiess@fas.harvard.edu.
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 (Caution: “Causation” is itself limited) 
  Critique 1: Causal 

inference (econometrics) 
can fail hopelessly 

  Critique 2: Automated 
methods (from “causal 
learning”) have strong, 
unrealistic, and untestable 
assumptions 

  Critique 3: Statistical 
expression of causation is 
short-range (Gene 
Richardson) 

A Cautionary Note on
the Use of Matching to
Estimate Causal Effects:
An Empirical Example
Comparing Matching
Estimates to an
Experimental Benchmark

Kevin Arceneaux1, Alan S. Gerber2, and
Donald P. Green2

Abstract

In recent years, social scientists have increasingly turned to matching as
a method for drawing causal inferences from observational data. Matching
compares those who receive a treatment to those with similar background
attributes who do not receive a treatment. Researchers who use matching
frequently tout its ability to reduce bias, particularly when applied to data
sets that contain extensive background information. Drawing on a random-
ized voter mobilization experiment, the authors compare estimates gener-
ated by matching to an experimental benchmark. The enormous sample
size enables the authors to exactly match each treated subject to 40
untreated subjects. Matching greatly exaggerates the effectiveness of pre-
election phone calls encouraging voter participation. Moreover, it can pro-
duce nonsensical results: Matching suggests that another pre-election phone
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2Yale University, New Haven, CT, USA
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 The problem with correlation 
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  Very different models 
will ‘predict’ equally 
well, and often better 
than any theory-driven 
model (Mullainathan & 
Spiess, 2017) 

  For intervention, we need 
causality (or at least 
associations) 

  Another problem: 
correlations can overfit 
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 Validity: Correlations can overfit, cross-
validation doesn’t fully address 
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Overfitting and cross validation 
Overfitting: Model fits to ‘noise’ rather than the cause/signal/
data-generating process. Machine learning metaphor: “memorize 
the data.” 

  (p-hacking relates to both fit and variability; overfitting is related 
but simpler) 

  Cross validation: split the data into two parts (e.g., 1:1, 4:1, 9:1). 
The signal should be the same, but not the noise. Error rate on the 
held-out “test” set should say how well correlations generalize. 
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 But cross-validation can fail 
  Re-using a test set can 

overfit to the test set! 
Happens in Kaggle 

  Or, if there are 
dependencies (temporal, 
network, group) between 
data splits, it “shares” 
information 

  E.g., temporal: Fitting on 
values that come after 
test values is “time 
traveling”! 
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But “hidden test” (true) 
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 A ‘false’ model may predict better than a 
‘true’ one 
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 The bias-variance tradeoff 

  The bias-variance ‘decomposition’, a 
foundational result for machine learning and 
modern statistics: 

  Leads to a ‘tradeoff’: Even if we have all the 
“right” variables, a biased model may be better 
  This is very strange! 
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 Simulation illustration: Setup 

  A linear data-generating process.  

  Wu et al. (2007): Fitting only Xp has lower 
expected MSE than fitting the model that 
generated the data when:  
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 The ‘true’ model predicts worse! 
Xp
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 Summary 
  ‘Prediction’ is a metaphor used for fitted values, not 

(necessarily) actual prediction 
  Spurious correlations count as ‘prediction’ and can 

do quite well in narrow terms, but are fragile and 
don’t help us intervene 

  Correlations can overfit, and cross-validation doesn’t 
fully solve 

  The bias-variance tradeoff means things are even 
more strange 

  I would argue: These are the pertinent issues 

Introduction 

Language: 
‘Prediction’ is 
retrospective 

Definitions: 
‘Prediction’ is 
correlation 

Validity: 
Correlations 
can overfit 

Paradox: 
‘Truth’ may 
not predict 

Summary 

References 



‘Prediction’ in machine learning Slides: https://MominMalik.com/cfi.pdf 26 of 27 

 Thank you! 
Introduction 

Language: 
‘Prediction’ is 
retrospective 

Definitions: 
‘Prediction’ is 
correlation 

Validity: 
Correlations 
can overfit 

Paradox: 
‘Truth’ may 
not predict 

Summary 

References 



‘Prediction’ in machine learning Slides: https://MominMalik.com/cfi.pdf 27 of 27 

 Citations/Credits by slide number 
12  David H. Bailey, Jonathan M. Borwein, Marcos López de Prado, and Qiji Jim Zhu, 

“Pseudo-Mathematics and Financial Charlatanism: The Effects of Backtest 
Overfitting on Out-of-Sample Performance.” Notices of the AMS 61, no. 5 (2014): 
458–471. https://dx.doi.org/10.1090/noti1105. 

14  David Lazer, Ryan Kennedy, Gary King, and Alessandro Vespignani, “The Parable 
of Google Flu Trends: Traps in Big Data Analysis.” Science 343 (14 March 2014): 
1203–1205. https://dx.doi.org/10.1126/science.1248506. 

15  Leo Breiman, “Statistical Modeling: The Two Cultures (with Comments and a 
Rejoinder by the Author).” Statistical Science 16, no. 3 (2001): 199–231. 
https://dx.doi.org/10.1214/ss/1009213726. 

15  Galit Shmueli, “To Explain or to Predict?” Statistical Science 25, no. 3 (2010): 
289–310. https://dx.doi.org/10.1214/10-STS330. 

15  Sendhil Mullainathan and Jan Spiess, “Machine Learning: An Applied 
Econometric Approach.” Journal of Economic Perspectives 31, no. 2 (2017): 87–
106. https://dx.doi.org/10.1257/jep.31.2.87. 

16  Kevin Arceneaux, Alan S. Gerber, and Donald P. Green, “A Cautionary Note on 
the Use of Matching to Estimate Causal Effects: An Empirical Example 
Comparing Matching Estimates to an Experimental Benchmark.” Sociological 
Methods & Research 39, no. 2 (2010): 256–282. 
https://dx.doi.org/10.1177/0049124110378098. 

16  David A. Freedman, Statistical Models and Causal Inference: A Dialogue with the 
Social Sciences. Cambridge University Press, 2009.  

19  scikit-learn developers, “Underfitting vs. Overfitting.” 2014. 
https://scikit-learn.org/0.15/auto_examples/plot_underfitting_overfitting.html. 

20 Greg Park, “The Dangers of Overfitting: A Kaggle Postmortem.” 6 July 2012. 
http://gregpark.io/blog/Kaggle-Psychopathy-Postmortem.  

23 Shaohua Wu, T. J. Harris, and K. B. McAuley, “The Use of Simplified or 
Misspecified Models: Linear Case.” The Canadian Journal of Chemical Engineering 
85, no. 4 (2007): 386–398. https://dx.doi.org/10.1002/cjce.5450850401. 

2  Robot holding skull: Cover image of “What Will Become of Us?”, New York 
Times Magazine (The Tech & Design issue), 14 November 2018. Concept by 
delcan & company. Photo illustration by Jamie Chung. Prop styling by Pink 
Sparrow. C.G. work by Justin Metz. 
https://www.nytimes.com/2018/11/14/magazine/behind-the-cover-what-
will-become-of-us.html. 

2  Terminator skull: Nemesis Now Ltd, Terminator Skull Box T-800 (18CM). 
https://www.menkind.co.uk/terminator-t800-skull-box. 

2  Hand: Hayati Kayhan, Holding human skull in hand, Conceptual image 
(Shakespeare’s Hamlet scene concept). 19 October 2014.  

3  Meredith Broussard, Artificial Unintelligence: How Computers Misunderstand 
the World. MIT Press, 2018. 

7  Sitaram Asur and Bernando A. Huberman, “Predicting the Future With Social 
Media.” In Proceedings of the 2010 IEEE/WIC/ACM International Conference on 
Web Intelligence and Intelligent Agent Technology (WI-IAT ’10), 492–499. 
2010. https://dx.doi.org10.1109/WI-IAT.2010.63. 

7  Ziad Obermeyer and Ezekiel J. Emanuel, “Predicting the Future — Big Data, 
Machine Learning, and Clinical Medicine.” New England Journal of Medicine 
375, no. 13 (2016): 1216–1219. https://dx.doi.org/10.1056/NEJMp1606181. 

7  OED Online, “predict, v.” Oxford University Press, July 2018. 
http://www.oed.com/view/Entry/149856. 

8  Daniel Gayo-Avello, “’I Wanted to Predict Elections with Twitter and all I got 
was this Lousy Paper’: A Balanced Survey on Election Prediction using 
Twitter Data.” arXiv, 28 April 2012. https://arxiv.org/abs/1204.6441. 

8  Daniel Gayo-Avello, “No, You Cannot Predict Elections with Twitter.” IEEE 
Internet Computing 16 (2012): 91–94. 
https://dx.doi.org/10.1109/MIC.2012.137. 

9  Drew McDermott, “Artificial Intelligence meets Natural Stupidity.” SIGART 
Bulletin 57 (April 1976): 4–9. 

Introduction 

Language: 
‘Prediction’ is 
retrospective 

Definitions: 
‘Prediction’ is 
correlation 

Validity: 
Correlations 
can overfit 

Paradox: 
‘Truth’ may 
not predict 

Summary 

References 


