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1. What is statistics? 
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“briefly, and in its most 
concrete form, the object of 
sta5s5cal methods is the 
reduc&on of data.”  

- R. A. Fisher, 1922, “On the 
mathemaFcal foundaFons of 

theoreFcal staFsFcs” 

What is statistics? 

Fisher: Raging misogynist, paid shrill for the tobacco industry… and one of 
if not the greatest inventors of sta5s5cal prac5ce. 
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What is statistics? 

“A quan5ty of data, which usually by its mere bulk is 
incapable of entering the mind, is to be replaced by 
rela&vely few quan&&es which shall adequately 
represent the whole, or… as much as possible… of the 
relevant informa&on contained in the original data.”  
 

- R. A. Fisher, 1922, “On the mathemaFcal 
foundaFons of theoreFcal staFsFcs” 
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What is statistics? 

A “staFsFc” (singular) is defined as a func5on of the 
data.  
 
The discipline of StaFsFcs is about defining “relevant 
informaFon,” and finding funcFons to capture it. 
 
How does it do so? 
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What is statistics? 

I understand staFsFcs as:  
 
The use of probability as a model for variability in the world.*  
This talk is about this idea.  
 
 
* Technically, “Probability is used in two dis5nct, although interrelated, ways in sta5s5cs, 
phenomenologically to describe haphazard variability arising in the real world and 
epistemologically to represent uncertainty of knowledge.” D. R. Cox, “Role of models in 
staFsFcal analysis” (1990). For now I focus only on the former.  
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Probability as a model for variability 

This implies a philosophical commitment: 
 
There are dis5nct en55es in the world that, despite being 
different, are similar in some way.  
 
As a corollary, we can thus learn about one thing by 
studying other things (and eventually, make 
statements about not-yet-seen enFFes based on the 
study of seen enFFes).  
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Note that it is not necessarily intrinsically true, and that by 
holding this belief we may actually be imposing it on the world! 
 

Averages are one way to summarize this similarity. 
For the problem with this, read the first chapter of 
Todd Rose’s End of Average (available from 
thestar.com as “When the U.S. Air Force 
discovered the flaw of averages”). 

 
Or, to summarize, a true “average man” (Adolphe Quetelet’s 
l'homme moyen, 1835), who is average in all aspects, would be 
quite peculiar!  

Implications 
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2. How does statistics use probability to model 
variability? 

9 of 40 



 
“It is remarkable that a science 
which began with the 
considera5on of games of 
chance should have become 
the most important object of 
human knowledge.” 

–  Pierre-Simon Laplace, Théorie 
Analy5que des Probabili5és 
(1812) 

First: the connection is not at all natural! 
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And the connection seems quite distant 

•  In staFsFcal pracFce, we almost never deal with 
probability statements, e.g., P(X=0 AND Y=2) = 0.1 
–  And even more rarely do we manipulate such statements 

•  Why, then, do courses in staFsFcs always start with 
probabiliFes? 
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And the connection seems quite distant 

•  Because probability moFvates everything in 
staFsFcs even if we don’t see it in the final models 

•  E.g., regression is a “condiFonal expectaFon” 
•  So, unfortunately, it is necessary to cover even 

though it is a Fny part of pracFce. 
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Random variables 

•  Core concept is that of a random variable.  
•  What is a random variable? 
•  A die that has not yet been rolled. It represents 

unrealized possibili5es.  
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What is the connection? 

•  Take users raFng movies. The ra5ng that a user could 
(or will) give to a movie is conceptualized as a random 
variable.  

•  RaFngs that have already been made are realized 
values of that random variable.  
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What is the connection? 

•  Of course, different raFngs are the result of variability in 
human tastes, not a “draw” from a “random variable.”  

•  So when we describe movie raFngs as a random 
variable, we are using probability as a model for 
variability.  
–  (Whether variability is the result merely of imperfect 

knowledge, or whether randomness actually exists, is 
something we can’t ever really know [Nasim Nicholas Taleb]) 

•  This sFll doesn’t yet answer how random variables 
represent observed variability… 
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Back to random variables 

•  Write random variables as uppercase, e.g., X.  
•  Write a realizaFon as lowercase, e.g., x.  
•  ProbabiliFes are wrilen as P(X = x), the probability 

that the random variable will be realized as one of 
its parFcular outcomes. As shorthand, we 
(confusingly) someFmes write just P(X), or p(x).  
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Random variables → Probability distributions 
•  The remarkable thing about probability is that it provides the 

noFon of randomness (the set of possible outcomes) having a 
“shape.” This is a probability distribuFon. Random variables are 
defined by their probability distribuFon 
–  Note that random variables are one thing, the equaFon for their 

distribuFon are another. Annoyingly, no easy way to go back and forth. 
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Linking probability to the world 

•  But what does it mean for something to have a 
“probability”? Either the sum of a roll of two 6-sided 
dice comes out as 7 or not!  

•  Have to have some link between possible outcomes 
(which is abstract and mathemaFcal) to what we 
actually observe in the world.  
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Linking probability to the world 

•  Here is one disFncFon between FrequenFsts and 
Bayesians:  
–  FrequenFsts link probability to the real world in terms of 

long-term frequency: what happens over mulFple runs.  
–  We’ll return to this later (what does long-term frequency 

mean for one-off events??) 
–  Bayesians link probability to the real world via what we 

think, as “reasonable expectaFons” or “personal beliefs.”  
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•  A discrete set of outcomes (like 
dice) is comparaFvely easy to 
understand: the number of ways 
to reach each possible outcome 

•  P(D1+D2 = s), where s is one of 2, 
3, 4, 5, 6, 7, 8, 9, 10, 11, 12. So, 
P(D1+D2 = 2) = 1/36, P(D1+D2 = 3) 
= 1/18… 

•  Can write as a vector, where each 
entry is the possible value: 

P(D1+D2 = (2,3,…,12)) = (1/36, 1/18, 
1/12, 1/9, 5/36, 1/6, 5/36, 1/9, 1/12, 
1/18, 1/36) 

Discrete probability distributions 
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•  But we also have con5nuous 
probability distribu5ons, for 
random variables that can 
take any decimal value. These 
are strange. 

•  Unlike a 6-sided die, which 
has P(X = x) = 1/6 for x = {1, 
2, 3, 4, 5, 6}, for a conFnuous 
probability distribuFon (a 
random variable that can take 
any decimal value), P(X = x) = 
0 for all x.  

Continuous probability distributions 

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

p 
( x

 )

2 4 6 8 10 12

0.
00

0.
05

0.
10

0.
15

D1 +D2

P 
( D

1
+
D
2 
)

21 of 40 



•  The difficulty with understanding 
conFnuous probability distribuFons is 
the same as with infintesimals in 
general: 
–  What does it mean for a substance to 

have a “density” of 1g/cm at a single 
locaFon? 

–  For an object to have a “velocity” of 
80km/hr (in a direcFon) at one instant, 
frozen in Fme?  

–  For a line to have a “curvature” at a single 
point?  

•  Infintesimals are counterintuiFve, but 
we’ve learned to work with them 

•  P(X ≤ x) does make sense. But this is a 
funcFon of x, and we can differenFate 
it to p(x) to get something equivalent 
to P(X = x). 

Continuous probability distributions 
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Distributions are theoretical objects 
•  Both discrete and conFnuous distribuFons are 

hypotheFcal underlying theore5cal objects. They do not 
exist in the real world; we appeal to them as 
explanaFons 

•  FrequenFsts have a noFon of “asymptoFcs”: as we get 
more and more data from the same data-generaFng 
process, it will (at infinity) “converge” to the distribuFon 

•  For processes with discrete possible outcomes, we can 
just count instances. For processes with conFnuous 
possible outcomes, we have to bin observaFons and 
make histograms. 
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Distributions are theoretical objects 
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3. Statistical inference: From data to the data-
generating process 
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Statistical inference: The big picture 

•  If you’ve taken a staFsFcs class, you probably saw a picture 
like this (from Robert E. Kass, “StaFsFcal inference: The big 
picture”, 2011):  
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Statistical inference: The big picture 
•  This is wrong. (Or at least, very limited).  
•  Again, quoFng Fisher (1922): 

–  “This object [reduc5on of data] is accomplished by construc5ng a 
hypothe5cal infinite popula5on, of which the actual data are regarded as 
cons5tu5ng a random sample.” 

•  This is quite metaphysical! We don’t want this in science. 
•  Jerzy Neyman and Egon Pearson came up with a way 

around this: there is no infinite populaFon, only the larger 
“general” populaFon, and the randomness lies only in the 
process of sampling (not in anything like realizaFons over 
mulFple possible worlds). No metaphysics!  
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Statistical inference: The big picture 
•  But what if we have the enFre populaFon of interest? Then 

are we no longer doing staFsFcal inference? 
•  No. A more honest, and general noFon of staFsFcal 

inference is that inferences are not to the general 
populaFon, but to an underlying data-genera5ng process. The 
randomness is not in sampling, but in the realizaFon of a 
process that could have turned out differently.  

•  Unfortunately, this either requires a metaphysical 
commitment to mulFple possible worlds. 

•  Or, for Bayesians, “reasonable expectaFon” (objecFve 
Bayes) or “personal belief” (subjecFve Bayes).  
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Statistical inference: The big picture 

•  The idea of staFsFcal inference is that the “data-
generaFng process” (random variables and 
interacFons between them) is an underlying 
theore5cal object. 

•  Using finite observaFons, we idenFfy that object 
with some amount of certainty (where quanFfying 
uncertainty also comes in). 

•  Once we have idenFfied the object, we have 
understood the phenomenon.  
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Distributions zoo 

•  Certain probability distribuFons arise from certain 
processes.  
–  Normal distribuFon: con5nuous addi5ve process. 
–  Binomial distribuFon: binary addi5ve process. 
–  Log-normal distribuFon: mul5plica5ve process. 
–  Poisson distribuFon: coun5ng process. 
–  ExponenFal distribuFon: wai5ng 5mes.  
–  Weibull distribuFon: mul5ple failure process. 
–  Beta-binomial distribuFon: Polya urn process (don’t ask.) 
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•  One approach to staFsFcs: come 
up with a distribuFon for each 
new processes.  

•  Usually nor worthwhile, since 
distribuFons are related (see 
diagram to right, Leemis & 
McQuesFon, “Univariate 
distribuFon relaFonships”, 2008). 

•  Dangerous to infer the process 
from a distribuFon! 

•  Usually, we are more interested in 
the determinisFc parts of data-
generaFng processes, or 
relaFonships between random 
variables with simple distribuFons 

Distributions zoo 
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Summary 

•  Variability is something we observe in the world 
•  Probability is a mathemaFcal abstracFon (that 

originated around gambling) 
•  StaFsFcs describes variability in terms of 

probability. 
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4. Where does data come in? 
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The likelihood principle 
•  The likelihood principle is fundamental to staFsFcal thinking.  
•  Take a the funcFonal form of a probability distribuFon: 

p(x) = 1/√(2πσ2) exp(-(x-µ) 2/2σ2) 
•  Take a set of data points, x1 = -1.38, x2 = -0.44, x3 = 1.64, x4 

= -0.25, … 
•  Invert things. Instead of asking what is the probability of x1 

being -1.38, ask: what is the most likely value of µ that 
generated an x1 of -1.38? 

•  Reconceive the funcFonal form as L(µ), a funcFon of µ 
•  Now called the likelihood.  
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Maximum likelihood 
•  By laws of probability, the probability that x1 = -1.38 AND x2 = -0.44 

AND x3 = 1.64 AND x4 = -0.25 is the product of their individual 
probabiliFes. 

p(x1, x2, x3, x4, …) = p(x1) p(x2) p(x3) p(x4) … 
= ∏i 1/√(2πσ2)  exp(-(xi-µ) 2/2σ2) 

•  Rewrite as a funcFon of µ turns this into a likelihood:  
L(µ) = ∏i 1/√(2πσ2)  exp(-(xi-µ) 2/2σ2) 

•  Use calculus to find the µ that will maximize the likelihood: turns out to 
be n-1∑i xi, the sample mean! 

•  Why do we care?  
•  The idea is that once we find µ, we have understood the process: we 

cannot reduce things further than knowing the shape of the uncertainty. 
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5. Why use statistics? 
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Reason 1: Deal with variability 

•  If we believe that there is variability in the world, 
and that data has value (although it is perfectly 
defensible, if not popular or acceptable, to 
challenge both of these!), then it follows that we 
have to use something like staFsFcs to manage 
data. 

•  What are alternaFves? 
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Reason 1: Deal with variability 
•  DescripFves (although these can involve low-level staFsFcs, for 

doing summaries): limited 
•  Conceptual mathemaFcal modeling: no data 
•  SimulaFon modeling: not models of data, don’t give individual 

predicFons 
•  Not accounFng for variability: violates our belief 
•  Not doing mathemaFcal modeling at all, but qualitaFve analysis: 

Should also do this, but can’t make use of administraFve and trace 
data 

•  Game theory, adversarial learning, etc., where variability is from 
decisions of an “opponent” (could be nature): in pracFce, can look 
very similar 
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Reason 2: It works 
•  Paul E. Meehl, Clinical versus sta5s5cal predic5on (1954) managed 

to convince physicians that randomized control trials were 
superior to clinical judgment (which is not at all obvious) 

•  Even “improper” linear models work beler than expert judgment 
•  (Note: this is not so simple of an argument. When modeling 

doesn’t work, as it frequently doesn’t, is it a failure of modeling, or 
the modeler? Saying the laler seems like apologeFcs. But also, if 
we can’t have modeling without modelers, does it maler?) 

•  (Also, if modeling works in places like finance, is it because it 
actually works, or because finance is a rigged game?) 
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That’s all for now! 

•  Next Fme(s): 
–  Probability up through condiFonal expectaFon 
–  Regression as condiFonal expectaFon 
–  Nonparametrics 
–  MisspecificaFon: omiled variable bias, and dependencies 
–  PredicFon vs. explanaFon 
–  Causality 
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