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ALL MODELS ARE WRONG BUT SOME ARE USEFUL




“We check our e-mails
regularly, make mobile
phone calls... \We may
post blog entries
accessible to anyone, or
maintain friendships
through online social
networks. Each of these
transactions leaves
digital traces that can
be compiled into
comprehensive pictures -
of both individual and
group behavior, with the
potential to transform
‘ourunderstanding of
our lives, orgamzat:ons, 2 S ; 8 2700 AN
and soc’et’es ; " it e, v . . David Mizer et al. 2009: Computatlo%; é%;?.oﬁ'eEifpizégié/ﬁ@ffv
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e > Simon Weckert, “"Google Maps Hack"
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¥ This shows larger themes

> Available data are often only a proxy

> So long as the proxy is never the thing itself, it can
fail

> Models of relationships and processes, too, are not
the things themselves

> Box: “[For] a model there is no need to ask the question
‘Is the model true?’. If ‘truth’ is to be the ‘whole truth’ the
answer must be ‘No’. The only question of interest is ‘Is
the model illuminating and useful?"."
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> When, how data/models are wrong
> When and how it matters
> What we cando
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¥ Outline

> Introduction

> Bias in geotagged tweets

> Platform effects in social media

> Trade-offs in types of modeling

> Dependencies and cross validation
> Discussion and conclusion
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¥ Biasin
geotagged
tweets

» Bias in geotagged tweets

Momin M. Malik, Hemank Lamba, Constantine Nakos, and Jirgen Pfeffer. 2015. Population bias in
geotagged tweets. In Papers from the 2015 ICWSM Workshop on Standards and Practices in Large-Scale Social
Media Research (ICWSM-15 SPSM), pages 18-27. May 26, 2015, Oxford, UK.
https:/www.mominmalik.com/malik_chapterl.pdf
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¥ Biasin
geotagged
tweets

» Many maps just show population

CONSUMERS OF
FURRY PORNOGRAPHY

MAYTHA STEWART LVING

SUBSCRIBERS TO

THE BUSINESS IMPLCATIONS ARE CLEAR.

J

Randall Munroe. 2012. Heatmap. https://xkcd.com/1138/
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==m > But maybe we can use this?

FOR INTERNET & SOCIETY
AT HARVARD UNIVERSITY

¥ Biasin
geotagged
tweets

@rmiguerios - otk
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wem > Do tweets measure population?

AT HARVARD UNIVERSITY

geotagged

> Biasin Geotagged tweets Population

tweets

Population density in 2010 US Census. Each square represents 1,000 people. Adapted from
Geography Division, U.S. Department of Commerce / Economics and Statistics
a7WMWS. Administration / U.S. Census Bureau, Nighttime Population Distribution Wall Map.

Adapted from Eric Fischer, 2009, Contiguous United States geotag map. https:/flic.kr/p/

Revisiting “All Models are Wrong” 12 of 57 https://MominMalik.com,/nico2020.pdf



?» Modeling population vs. users

> Users proportional to population:
Ui = aPi+¢€iP;
> Take a log transformation:
log U; = log o + log P; + €'
> Compare to a linear model:

log U; = Bo + P1 log P; + €]
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=M > Result: Not proportional

FOR INTERNET & SOCIETY

AT HARVARD UNIVERSITY

(Each dot is a Census block group)
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» Identifying specifics

> Spatial multivariate modeling of biases
Geotagged tweet users associated with:
- & Rural, poor, elderly, non-coastal
- 4 Asian, Hispanic, black

> ...but these are only the demographics we

can access. E.g., harassment of women on
Twitter likely discourages geotag use
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oM > Why it matters: Some uses are bad

AT HARVARD UNIVERSITY

Hurricane Sandy, tweets vs. damage/deaths

¥ Biasin
geotagged
tweets

/

Hoboken (fload, Rlger) ‘. ~Long Island City (flood)

fast Side (flood, power)

. /— JFK (delays)

Red Hook (flood)

Coney Island (flood, storm)

Long Beach (flood, storm)/

Shelton et al., 2014.
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Bay Park (sewage plant spill) j

/—Staten Island (50% of all Sandy-related deaths)

/——New Dorp/Oakwood (flood, storm)¥ Rockaway (flood, storm)

Breezy Point (fire, flood)
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¥ Responses to demographic bias

> Model the biases!
> Calibration and weighting

> Use data for appropriate questions
- "Postcards, not ticket stubs” (Tasse et al., 2017)

> Find clever study designs or data
comparisons, establish panels, etc.
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effects in

social media

> Platform effects in social media

Momin M. Malik and Jirgen Pfeffer. 2016. Identifying platform effects in social media data. In Proceedings of
the Tenth International AAAI Conference on Web and Social Media (ICWSM-16), pages 241-249. May 18-20,
2016, Cologne, Germany. https://www.mominmalik.com/malik_chapter2.pdf
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=M > Design can cause/change behavior

Rating by date
3.9

¥ Platform
effects in
social media

mean score

3.2

0 500 1000 1500 2000 2500
time (days)

Average Netflix movie ratings over time. Each point
averages 100,000 rating instances.

Koren, 2009.
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=M > Social media platforms are businesses

FACEBOOK (FB): -~ > Not neutral utilities
~ 170.93 v 2.78 (1.66%)

Prev. Close 168.15 Market Cap (USD) 493.468B Day Low DayHigh 52 Week Low 52 Week High O r re S e a rC | l
Open 165.80 Volume (Qty. 5,1 X 17339 13761 195.32

zzzzz

¥ Platform

social media

17220
o
effects in environmel ItS
INTRADAY  1W 1M M 6M  YTD 1Y 3Y  5Y  10Y  MAX CHART OPTIONS = EXCHANGE :BTT
180.00—

> Platform engineers
try to shape user

behavior towards

desirable ends
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e > Sites try to grow their users’ networks

FOR INTERNET & SOCIETY

AT HARVARD UNIVERSITY

ations 9 Messages L 4 Search Tw

Who to follow I
Linkedm the suggestions below, tailored just for you.

% Platform It,S ea S i e r th a n eve r to g rOW Search using a person’s full name or @username

effects in
social media = Keton Kakkar @KetonKakk: °
yo u r p rOfe SSI O n a | n etWO rk %’ A;:;::n Aameraizan /eczri}da:)f I?T:migrantsl s
’ / | formerly
INTRODUCING THE NEW | Editor

Followed by Frank Pasquale and monicabulger.

William Bumpas @wwbumpas
Now in DC, prev . Likes data, ethnography,

tech, policy, media, critical theory, China, rural US,
subversive memes. Loves any combo thereof.
he/they

Followed by Prof Gina Neff and Oxford Internet Institute.

People You May Know

ooo

Jou'h Randail D-\ Chevelang oo Naoler
.. Rich Borroff @borroff s
4 Running (a minor part of) the computing infrastructure °
" " M for a major university in the Boston, MA area, and

trying to keep the bad guys at bay.

Followed by Berkman Klein Center for Internet & Society.
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e > Recommending "friend-of-a-friend"

FOR INTERNET & SOCIETY
AT HARVARD UNIVERSITY
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¥ Platform
effects in
social media
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» Behavior, or platform effects?

> When we measure
behavior, what are

Rating by date

3.8

effects in
social media

we really >

measuring? People’s i~ I
hehavior, or e \ m‘ﬁf -

4

platform effects? RN o s
> How, as outsiders,

ime (days)

Average Netflix movie ratings over time. Each point

C a n We fi n d O u t? averages 100,000 rating instances.
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e~ > Data artifacts can reveal inner workings

FOR INTERNET & SOCIETY
AT HARVARD UNIVERSITY

¥ Introduction

¥ Biasin
eotagged
tweets

¥ Platform
effects in
social media

¥ Tradeoffs in
types of
modeling

¥ Dependencies
and cross
validation

¥ Discussion
and
conclusion

> References

The Matrix (1999) “déja vu* §
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=M > Data artifacts as natural experiments

> Regression Discontinuity (RD) Design (technically,
Interrupted Time Series, ITS) estimates causality

¥ Platform
effects in

SSSSS | media

o =~ N W ~ O
T T T

-
-

0 1 2 3 4 5 6 7 8 9 10

Fig. 2 from Imbens and Lemieux (2008): Potential and observed outcome regression functions.

> The difference between "before” and “after”
estimates the local average treatment effect
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e > Case: Facebook's “People You May Know"

FOR INTERNET & SOCIETY

AT HARVARD UNIVERSITY
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¥ Platform
effects in
social media

» PYMK changed the Facebook network!

> Facebook links: +300 new > Triangles: +3.8 triangles

edges per day (x2)

Daily added edges
Daily added edges
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» Responses to platform effects

> Investigate: how do Facebook “friendship”
fail to generalize? What about the Facebook
social network?

¥ Platform

> Platform effects are phenomena to study in
themselves!

> Data artifacts as natural experiments
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FOR INTERNET & SOCIETY
AT HARVARD UNIVERSITY

¥ Platform
effects in
social media
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Social Data: Biases, Methodological
Pitfalls, and Ethical Boundaries

Alexandra Olteanu*", Carlos Castillo®, Fernando Diaz* and Emre Kiciman*
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Social data in digital form—including user-generated content, expressed or implicit
relations between people, and behavioral traces —are at the core of popular applications
and platforms, driving the research agenda of many researchers. The promises of
social data are many, including understanding “what the world thinks” about a social
issue, brand, celebrity, or other entity, as well as enabling better decision-making in a
variety of fields including public policy, healthcare, and economics. Many academics and
practitioners have warned against the naive usage of social data. There are biases and
inaccuracies occurring at the source of the data, but also introduced during processing.
There are methodological limitations and pitfalls, as well as ethical boundaries and
unexpected consequences that are often overlooked. This paper recognizes the rigor
with which these issues are addressed by different researchers varies across a wide
range. We identify a variety of menaces in the practices around social data use, and
organize them in a framework that helps to identify them.

our own sanity, you have to remember that not all problems can be solved. Not all problems can be
solved, but all problems can be illuminated.” ~Ursula Franklin'

Keywords: social media, user data, biases, evaluation, ethics

1. INTRODUCTION

We use social data as an umbrella concept for all kind of digital traces produced by or about users,
with an emphasis on content explicitly written with the intent of communicating or interacting
with others. Social data typically comes from social software, which provides an intermediary or
a focus for a social relationship (Schuler, 1994). It includes a variety of platforms—like for social
media and networking (e.g, Facebook), question and answering (e.g, Quora), or collaboration
(eg. Wikipedia)—and purposes from finding information (White, 2013) to keeping in touch with
friends (Lampe et al,, 2008). Social software enables the sacial web, a class of websites “in which user
participation i the primary driver of value” (Gruber, 2008).

‘The social web enables access to social traces at a scale and level of detail, both in breadth
and depth, impractical with conventional data collection techniques, like surveys or user
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¥ Tradeoffs in
types of
modeling

¥ Tradeoffs in types of modeling

Momin M. Malik. 2020. A hierarchy of limitations in machine learning. In submission.
https:/www.mominmalik.com/hierarchy draft.pdf
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=M > Approaches to research

Inquiry
Qualitative Quantitative
II \\
! \
' “Mathematical” Probability based
» Tradeoffs in Simulation | | Equation Explanatory Predictive
types of II \\ T
modeling P II \\
o Observational Experimental Out-of-sample testing Cross-validation
II \\ // \\
! \ / \
o - Observational Experimental k-fold Dependent
I\ T\ I\ T\
I\ I\
> Each branch has trade-offs ;o ) 7 K

1 \ 5 5 1 \

> No one method is better any other
> Mixed methods can combine
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=M > Typical machine learning

Inquiry
Qualitative Quantitative
/I \\
! \
“Mathematical” Probability based
» Tradeoffs in Simulation | | Equation Explanatory Predictive
types of [ YRR
modeling II \\ /I \\ \
o - Observational Experimental Out-of-sample testing Cross-validation
II \\ // \\
! \ / \
o S Observational | | Experimental | | k-fold | | Dependent
T\ TV 7\ TV
I\ / \ I\ / \
> Problems propagate downwards [ / J /

> E.g., quantification affects everything

below
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em > Quantification locks in meaning

> Qualitative research can
i get directly at how

Qualitative / \Quantitative th i ngs a re m U |tifa CetEd !

'II \\' | “Mathematical” | ﬁ h ete roge. n e (? u S/
intersubjective

types of Simulation Equation Explanatory
modeling o o .
A > Quantification/

L”Mel,ivaf‘ el 12 easurements lock in
| E one meaning; and
- frequently are proxies,
which are imperfect
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eom > Stats and ML use central tendencies

> Statistics and machine
only option to both
/- directly use data and
account for variability

> They do so via central
nulation | | Equation Explanatory te n den Cy

- =g [Beimens] [ouersonpirest > This requires multiple
o " [omemi] e ODSe€rvations, and
o : |ndependence
assumptions

] Quantitative

I “Mathematical” I Probability based
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e > ML is "prediction” only

> “Predictions” are

defined as what
j\ﬁ minimizes loss
{ e T— > l.e., correlations

R E./ \m > Non-causal correlations

\' Observational | Experimental | | Out-of-sample testing | IE Ca n S O m eti m eS p re d i Ct

N well, but they frequently
o Observational Experimental E ” .
7/ don't explain, and can

fail unexpectedly
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e > Prediction misses constructs

> Constructs: primitives of

@—>@ social science

Features "Ground Truth” - What we care about

- Often unobservable (and
hypothetical/subjective, e.g.
> Tadeofisn friendship)

types of

modeling Features “Ground Truth” - Proxies always give errors
(for binary constructs: false
negatives and false
positives)

- E.g., Google maps usage is
Construct not traffic
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oM > Constructs: Subjective, multifaceted

AT HARVARD UNIVERSITY

Patterns in pixels

Human label

<A

¥ Tradeoffs in
types of
modeling

-

“Cat-ness”
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¥ Responses to problems of proxy

> |dentify/define the underlying construct

> How does the correlation work? Where does
it fail?

> Treat “ground truth” labels as measurements;
investigate validity

> Use machine learning for scaling subjective
human judgments, rather than thinking it
uncovers underlying “truth”
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¥ Dependencies
and cross
validation

» Dependencies and cross validation

Momin M. Malik. 2020. A hierarchy of limitations in machine learning. In submission.
https:/www.mominmalik.com/hierarchy draft.pdf
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NN > Performance claims are from cross-

BERKMAN
KLEIN CENTER

validation

> Rescher (1998) notes
every prediction

] involves a meta-
e prediction: do we think
— : the prediction works?
xplanatory Predictive
| /L J\ > Cross-validation is
@ |Exper|mental| Out-of-sample testing ICross-vaIidationI

metaprediction for ML

But, how well does
cross-validation work?

I\
! \
o Observational Experimental k-fold Dependent
// \\ ,/ \\ /l \\ ,/ \\ >
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=M > Purpose of cross-validation

= = True

> If we are no longer guided by theory, and use
automatic methods, we risk overfitting: fitting to
the the noise, not the data
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ee > Intuition for cross-validation

> |dea: if we split data into two parts, the signal should
be the same but the noise would be different

> Cross validation: Fitting the model on one part of the
data, and "testing” on the other
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¥ Classic argument for CV

Err(f2) = B[ Y™ - V|3
= L[Er| Y13 + Bl VI - 2EA(Y*T V)]
= L [Ef| V" |3 + ~24rEA(Y*YT)]
+ 3] W E(YV)TEAY) + 2t uEe (V)]
+ 1 —uTy - 2MTEf(\A/)]
:%[trZ+H,u—IE(/\>)H§—|— —2trcovf(v*,?)]
— irreducible error + bias® + — optimism
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> Apply this to non-iid data

> Imagine we have, for £; =¢?and £; = po?, i#j

M)

> Then, optimism in the training set is:
2 tr Cove( Y1, Y1) = 2 tr Cove( Y, HY1) = 2trH Vars(Y;) = 2 tr HE

> But test set also has nonzero optimism!
2 tr Cove(Ya, Y1) = 2 tr Cove( Yo, HY;) = 27 trH117 = 2902
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e > Simulating the toy example

FOR INTERNET & SOCIETY
AT HARVARD UNIVERSITY

2 |
" ~%- Training set

- —0— Test set

< 7||—+= New draw
—— True mean

10
\

¥ Dependencies
and cross [
validation

-1

-2

=3
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¥ Dependencies
and cross
validation

» Out-of-sample MSE: much worse!

@ = - s Training error
S Test set error
o — Mean training error: 0.40 —— Out—of—sample (true) error
Mean test set error: 0.61
S+ “ Mean true error: 1.61 (also, long tail!)
= Ll
= i Matches theory!
O O R .
a) i Irreducible error: 1
~ x | Estimator variance: 0.6
1 Expected bias: 0 (OLS is unbiased)
¥ ' Expected training optimism: 1.21
. i I Expected test set optimism: 1
S — i
I I I I
0 5 10 15
MSE
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e > Many real-world examples

> There are indeed cases where cross-validation
assessments of machine learning performance fail!

> Time series: do cross-validation in blocks
- Otherwise, “time traveling,” gives great performance

> Activity recognition: “leave one subject out” cross
validation performs far worse (i.e., more honestly)

> Necessary but not sufficient; underlying causal
processes can introduce unobserved variance,
destroying previously-holding correlations

and cross
validation
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¥ Responses to failures in CV

> Do true out-of-sample testing

> Do experimental testing if predictions used for
decisions (Cardoso et al., 2014)

> All performance claims are preliminary until
such testing

> Language: maybe use “retrodiction” and “back-
testing,” or simply “correlation,” instead of
“prediction” to not mislead

> For robustness, maybe do statistics instead
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¥ Discussion
and
conclusion

¥ Discussion and conclusion
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e > Larger themes for this work

> "Confirmation holism,” and “"experimenter’s regress":
if we don't like a result, we can always find something

to challenge
> We should do this even when we do like a result

> Box: “this road is endless...”

> Qualitative, critical, and theoretical social science
can guide, especially around where and how claims
of universalism and objectivity support injustice

> Data and models should reflect understandings of the
world, not define them
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> The work to be done

> We have a good idea of where biases are; but
work remains in quantifying them

> Modelers should be trained with clear
articulations of limitations of data and modeling

> Mixed methods probably the most promising
way forward for research

- Qualitative annotation for “ground truth” (Patton et
al., 2019)

- Experimental design for testing machine learning
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