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Update: reproducibility in ML out!
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Machine learning (ML) methods are proliferating in scientific research. However, the adoption of these methods License 4.0 (CC BY-NC).

has been accompanied by failures of validity, reproducibility, and generalizability. These failures can hinder scientific
progress, lead to false consensus around invalid claims, and undermine the credibility of ML-based science. ML
methods are often applied and fail in similar ways across disciplines. Motivated by this observation, our goal is to
provide clear recommendations for conducting and reporting ML-based science. Drawing from an extensive
review of past literature, we present the REFORMS checklist (recommendations for machine-learning-based science).
It consists of 32 questions and a paired set of guidelines. REFORMS was developed on the basis of a consensus of
19 researchers across computer science, data science, mathematics, social sciences, and biomedical sciences. REFORMS
can serve as a resource for researchers when designing and implementing a study, for referees when reviewing v
Discussion of A hierarchy of limitations in machine learning” 2 of 32 Slides: https://MominMalik.com/hlrs2024.pdf




Paper out!

The effect of
dependencies
on machine
learning

Other
concerns

References

The effect of dependencies in machine

learning

Discussion of A hierarchy of limitations in machine learning”

30f32

Slides: https://MominMalik.com/hlrs2024.pdf



Summary

- Machine learning generally ignores
dependencies between observations (assumes

iid)

- This is usually justified for model fitting; and the
major impact of dependencies is on inference.

- The problem is in our ability to estimate model
performance; we think we are doing better than
we actually are
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Without (conditionally) iid, nonparametric
models are unidentifiable

“A number of problems, some quite fundamental,
occur when nonparametric regression is
attempted in the presence of correlated errors.
Indeed, in the most general setting where no
parametric shape is assumed for the mean nor
the correlation function, the model is
essentially unidentifiable, so that it is
theoretically impossible to estimate either function
separately.” (Opsomer et al. 2001)
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Estimator properties of estimates of
model performance

STl - 'Metaprediction—the prediction about predictions—is... an
The ffecto integral component of the predictive enterprise itself...

dependencies

learming Indeed, to characterize someone as a reliable predictor... is
in effect to predict on one’s own account that this agent’s
predictions will generally come true—and is thereby to make
a metaprediction of sorts.” (Rescher 1998)

- Metaprediction to at least third order is worthwhile

- First-order prediction: the prediction itself, y

+ Second-order prediction: [E(y), estimate via CV

. Third-order prediction: E(E(§)), look at properties of CV
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Inference (in statistics): If uncertainty of
an estimator is less than the “signal”

Random variable, X

e

Mean, E(X) = u Standard deviation, \/V(X) = o

Estimator,{ Estimé’tor,ﬁ\A
Expected value, E(zi)  |Standard error, \/ V(i) Standard error, \/V(7)

Expected value, E(0)

The variance of the estimator of the mean gives us the uncertainty of the estimate, and is given
the special name of the standard error. If the uncertainty is small enough, we say we have made
an inference to the underlying data-generating process.
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Going on ad infinitum...

Random variable, X
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References / \ \

Expected value, E(;z)  Standard error, \/ V() Standard error, \/V(7)
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Going on ad infinitum...

R

| 1 i 1

I DONT KNOW HOW To PROPAGATE
ERROR CORRECTLY 90 I JUST PUT
https://xkcd.com/2110/ ERROR BARS ON ALL MY ERROR BARS.
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Machine learning: Instrumentalist

Random variable, X

Estimator, 1

Expx@lue, E(xz)  Standard

ML skips over the entire machinery of inference, creating estimators only to recover some aspect
of held-out data. (Statistical machine learning brings theory back in, but for the purpose of
seeing what best predicts, not what recovers information.) Part of what we argue in "REFORMS”:

must bring back in examination of properties of estimators of estimators (like held-out data)
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Matrix bias-variance decomposition

err(f1) = E¢[|Y — Y3
= LEAYIB+EIYIB - 2E(YTY)]
= LIEe| Y5 + ~2tr By (YY)
+ 2| T+ Be(V)TEAY) + 2t (V)T |
+ 5 e - 2MTEf(\A’)]
= Loy + - B(V) 3+ ~2tr Cove(Y, V)]
irreducible bias "sotimism”
("“Bayes”) error squared P
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Classic argument for CV

Training:
err(f) = LE¢||Y — Y5
L[t 4l B(Y)I3 + tr Varg (V) — 2t Cove (Y, V)|

Testing:
Err(f) = LEe[|Y* = V3
[trz 4 g — E(Y)|2 + trVars(Y) —M}
The difference is the optimism (Efron 2004; Rosset and Tibshirani
20205 Opt(f1) = Err(fi) — err(ft) = 2 tr Cove(Y, Y)
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Apply this to non-iid data

S - Imagine we have, for X; = 0® and X;; = po®, i #j

Y, X| o[ £ po’1l7
learning [Y2] ~ N ([X] /B, [po_QllT z ])
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concerns

References

Then, optimism in the training set is:
2 tr Cove( Y1, Ya) = 2tr Cove(Ye, HY1) = 2trHVarg(Y1) = 2 tr HE
- But test set also has nonzero optimism!

%tr Covr( Yo, /\;1) = tr Cove(Ya, HY:) = 2’00 trH11" = 2p0°
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Simulated MSE

O Training error
Test set error
v — Mean training error: 0.40 —— Out—of-sample (true) error
Mean test set error: 0.61
- Mean true error: 1.61 (also, long tail!)
N
& (Theoretical:)
D) on — .
a Irreducible error: 1
o Estimator variance: 0.61
Expected bias: 0 (OLS is unbiased)
Expected training optimism: 1.21
7 Expected test set optimism: 1
o —
I I I I
0 5 10 15
MSE
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Dependencies and CV: examples

+ Highly-cited “Twitter mood predicts the
stock market” trains on future values, tests
on past values: that is “time-traveling”! (see
critique by Lachanski and Pav 2017)

- A colleague of mine trained a model to
recognize birds on his windowsill in webcam
images, splitting frames randomly...

Public Leaderboard Rank

« Park (2012) has a great example of
overfitting to the test set in Kaggle. Having a
“private leaderboard” helps catch overfitting
in Kaggle (see also Dwork et al. 2015)

- lagree with Wagstaff (2012) that in research, it's
probably not worth having a test set we only
use once (do we give up if performance is
bad?). But we should temper our claims, and do
out-of-sample testing

Private Leaderboard Rank
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° LI S——— —e
. ] '. . 7.? o
* 9 * -
.. . :. ¢
. -
. . . *
- ° - .
™ .
.
* .
.
10 20 30 40 50 60
Number of Submissions
.
. .. ° .
., '.: .
.
. o* :
- S ———
. L
. : .. .o ® . . - +
L
.
L] .
® L
10 20 30 40 50 60

Number of Submissions
Slides: https://MominMalik.com/hlrs2024.pdf



Applying to networks

- This formulation would apply to a
network autocorrelation model, where
network is nuisance parameter

- But what if we are modeling the edges,
which represent dependencies between

observations?
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Modeling the edges

Y| X3 Xo - Xy
Paper out!
Llyi| x11 xi2 -+ Xid
The effect of 2 Yo | Xo01 Xoo -+ Xod
dependencies
on machine
learning
ni{ yn| Xn Xn2 Xnd
Other
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References
index | from to Y Ws W5 W3
e 1 2 Y12 1(x11 = x21) X12 — X22 X13
€ 2 3 ¥23 1(x11 = x31) X12 — X32 X13
€nt1 2 1 Y21 1(x1 = x11) X22 — X12 X23
ez(g) n—1 n Y(n—1)n 1(X(n—1)1 = Xp1) X(n—1)2 — Xn2  X(n—1)3
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But dyads are dependent too!

© L) 12

-geom. weighted
out-degrees

-geom. weighted
in-degrees

-alternating tran-
sitive k-triplets

-alternating indep.
two-paths

-two-paths (mixed

Yiexp{—a X, A}
Y ep{—ad, Ag}
A A {1 ECE Sy Akakf}
A {1 (- %)Zk#w Akakf}

2 i.k) AikArg

Parameter | Network L. . .
Factor graph X Parameterization Matrix notation
name Motif
@ ——————————————— -mutual dyads o-—o0 e A 1tr (AAT)
0
777777777777 -in-two-stars ‘/\a (i Ak sum (AAT) — tr (AAT)
————————— -out-two-stars /\ ik AiAik sum (ATA) — tr (ATA)

sum (exp{—a rowsum (A)})
sum (exp{—a colsum (A)})
A sum (A o (1 - %)AAfdmgMA)))
\ sum (1 (- diag(AA))

sum (AA) — tr (AA)

two-stars) 6 o
-transitive triads i\a Z([.j.k) AiAiAi tr (AAAT)
Nk # i j
-activity effect o—- 25X Ay sum (X O rowsum (A))
-popularity effect -0 20X 2 Ay sum (X © colsum (A))
similarity effect —o0 Zu Ajj (1 — %) sum (A)S)
Vi, i)
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Covariance structure of edges (n = 15)

Total covariance between dyads

* The pairs of edges that are present
N together, or aren’t present together
%« Note: A theoretical construct, since
we only see edges once (or once
per time slice)

Mutual dyads In-2-stars Out-2-stars
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No data split would allow generalizable
estimates

paporcut - Partition nodes into training
o and test sets?

purirriven - Breaks up triads; omitted
feaming edges “share” information
Ot across training and test

| (diagram: blue are edges
Reforences N that include node 7)

- Partition dyads?
- Breaks up nodes; even
worse
- Can'teliminate, but can
minimize optimism by
careful data splitting
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Quantification and “ways to understand a
person” (see Kiviat 2023)

As a case (quant) In narrative (qual)
Context/circumstance Stripped away Key
Mental states Absent (for the most part) Crucial; constitutive
Relevant features Determined in advance Emergent
Orientation to time Atemporal Chronological
Ordering of features Unimportant Meaningful
Other actors Invisible Often present
Causal logic Mathematical Theoretical
Boost predictive validity =~ Add cases Know person better

Slide from Barbara Kiviat, based on “Bowker and Star 2000; Bruner 1986; Desrosiéres 1998; Espeland 1998; Espeland and Stevens 1998, 2008;
Fourcade and Healy 2017; Hacking 1990; Porter 1994, 1995; Ricouer 1998; White 1980, 1984". | would add: Abbott 1988
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Unbiased vs. minimizing loss: “True”
model can “predict” worse!
- A linear data-generating process.

y ~N (@DXP + 0qXq; 02')

- Wu et al. (2007): Fitting only X, has lower
expected MSE than fitting the 'model that
generated the data if and only if:

B Xy (1, —Hp) Xq 8y < qo?
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Simulation: 5 weak covariates, each
highly correlated with a strong covariate

!—WWT_T\T\TWT\?

i s
ELEELE .

Discussion of A hierarchy of limitations in machine learning”
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0.020

0.015

0.010

0.005

0.000

Mean Squared (test) Error over 1,000 runs

— True

Underspecified
All-subset

- Stepwise
Ridge
Lasso

T T T
100 150 200

MSE

Simulation of Wu et al. (2007)
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40 60

20
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-60
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How the underspecified model, and
regularized models, do better

True model, fitted coefficients over 1,000 runs Stepwise selection, fitted coefficients over 1,000 runs Ridge, fitted coefficients over 1,000 runs

40
40
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Explanation (causation) vs. prediction
(correlation)

— — - Very different sets of
= — — correlations can “predict”

equally well (Mullainathan

and Spiess 2017); Breiman
(2001) called this the

— . - "Rashomon effect” and saw

Parameter in the linear model

— —— it as a point in favor of
e S prediction over trying to get
= ————=——— 3t causation

- But if we want to intervene,

1 2 3 4 5 6 7 8 9 10 we need causation
Fold of the sample
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Levels of prediction (Rescher 1998)
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“Prediction” and other language

- Communication: stop saying “prediction” if it is really “correlation”

- The use of ‘prediction’ leads to false, inflated expectations. Instead of saying “prediction” for
post-hoc demonstrations (Gayo-Avello 2012), use “retrodiction”: it is awkward, but that's what we
need. For time series: nowcasting, back-testing (although better language is not enough:

- Partial correlation (i.e., for “ceteris paribus” interpretations) can be described with “association”
- "“Prediction” is overused as it is
- Statements like "predict the probability of risk”, or “calculate the probability of a likelihood” exist
and are redundant if not nonsensical (akin to, “a probability of a probability [of a probability]”).

*  Probabilities and risks are always latent (and indeed, are hypothetical and metaphysical), so how can we
“predict” them? We should say that we estimate probabilities and risk (say estimated probabilities, etc.), and
not overload on synonyms for probability

- Use "detection” or “classification” if labels are manifest but unknown. E.g., we don't “predict” race;
“detecting” and “predicting” cancer imply two very different tasks; etc.
- Models, not algorithms (unless you really do mean an optimization algorithm). Why?
Specificity: logistic regression is a model, IRLS is an algorithm. Random forests are a
model, CART is an algorithm. And: we already know “all models are wrong” (Box 1979)
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Guarantees of what?

The Frequentist-Bayesian issues come back again

- To get information about the world, we want our models to
give us P(H | D)

- But we want to use methods with frequentist guarantees

(e.g., a 95% credible interval, if repeated, will not necessarily
contain the true value 95% of the time)

- There's no way to get P(H | D) without a prior, and with
priors, we don't get frequency guarantees

- No frequency analysis is about the specific situation; it's a
property of the procedure (including what | did here)
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Generalize to what?

It by “generalizability,” we mean that a fitted model will

apply to very different contexts, probably very few ML
models will generalize (at least for the social world)—or at

least our theory gives us no guarantees that this will happen

- Our interest is in the quality of predictions that we can make
with a specific model, but all our analysis refers to is if the
ML procedure will generalize.

- Note that, despite many in ML claiming that it is Bayesian
(e.g., Kevin Murphy's textbook), data splitting is a deeply
frequentist procedure and so is mainstream ML overall
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