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What would you count as a 
“computational method”?
• Using a calculator?

• Using Excel? 

• A linear regression in Excel?

• A linear regression in R? 

• A Bayesian hierarchical model in SAS?

• A hierarchical mixture model in 
MPLUS?

• A regular expression (string matching) 
script in Python? 

• A decision tree in Python?

• A topic model with Latent Dirichlet 
Allocation in MATLAB? 

• A Generalized Additive Mixed Model in 
R?

• An agent-based simulation in Netlogo?

• Cross-tabs from a billion phone call 
records?

• Using ChatGPT online? 

• Using ChatGPT’s API* in Python? 

*API = Application Programming Interface
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Outline

• History and nature of machine learning

• Data and machine learning in the social 
sciences

• What in data science, and what 
computational methods, are substantive and 
worth using? 
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Learning Goals

• Know what is the actual content of data science, 
“computational science”, machine learning, and artificial 
intelligence as compared to (traditional) statistics

• Identify use cases, non-use cases, and weaknesses for 
these

• Identify anxieties within social science around data and 
computation, and determine the extent to which they are 
justified
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History and nature of machine learning
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“So, it’s not real AI?” (Broussard, 2018)

• “So, it’s not real AI?” he asked. 
• “Oh, it’s real,” I said. “And it’s spectacular. But 

you know, don’t you, that there’s no simulated 
person inside the machine? Nothing like that 
exists. It’s computationally impossible.” 

• His face fell. “I thought that’s what AI meant,” 
he said. “I heard about IBM Watson, and the 
computer that beat the champion at Go, and 
self-driving cars. I thought they invented real 
AI.” 
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Machine learning vs. statistics

xkcd.com/1838
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How/why/when? View from AI
“As Steve Abney wrote in 1996, ‘In the 
space of the last ten years, statistical 
methods have gone from being virtually 
unknown in computational linguistics to 
being a fundamental given.’... after 
about 14 years of trying to get 
language models to work using 
logical rules, I started to adopt 
probabilistic approaches”.

– Norvig, “On Chomsky”, 2010
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How/when/why? View from cognitive 
science

“1980s–1990s work in machine 
learning often replayed insights 
available in traditional statistics... 
Indeed, it became increasingly clear 
through the 1990s that many 
‘insights’ of connectionism were 
differently named versions of 
statistical techniques.”

– Boden, Mind as Machine, 2006
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How/when/why? View from statistics 
(retrospective)

“At first, ML researchers developed... a 
collection of rather primitive (yet clever) 
set of methods to do classification... 
that eschewed probability. But very 
quickly they adopted advanced 
statistical concepts like empirical 
process theory and concentration of 
measure. This transition happened in 
a matter of a few years.”

– Wasserman, “Rise of the Machines”, 
2014
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How/when/why? Finally (2023), a 
perspective from history of science

• “Some fields, like biology, are named after the object of study; others like 
calculus are named after a methodology. Artificial intelligence and 
machine learning, however, are named after an aspiration: the fields are 
defined by the goal, not the method used to get there.”

• “By the 1960s, practitioners argued, pattern recognition succeeded in 
large part because it had abandoned the effort to simulate human 
perception: ‘Whatever successes we have had… have been the result of 
an effective transformation of a perception-recognition problem into a 
‘classification problem.’ And pattern recognition researchers cared little 
about the symbolic side of artificial intelligence.”

• “In a moment of profound irony, machine learning, a little-respected 
relative of artificial intelligence, would come in the new millennium to 
become the greatest success, even savior of AI, to such an extent that 
after 2013 machine learning came largely to displace the far more 
ambitious goals of traditional AI, and the terms came to be used 
interchangeably.”
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A preemptive view from statistics
• Leo Breiman (1928–2005) was a statistician 

who worked outside of academia for 20 years 
(as a consultant, including for the US military). 
In that time, he came across (and contributed 
to) machine learning. He noticed that the 
“algorithms” of machine learning were actually 
a style of statistical model (to which he gave the 
name “algorithmic modeling”); and 
understanding them as models could help 
illuminate and improve their performance. 

• He wrote a landmark paper, published in 2001, 
to advocate for statisticians to do more 
“algorithmic modeling.”
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Breiman’s (2001) prescient diagnosis
“the focus in the statistical community on data models has:
• “Led to irrelevant theory and questionable scientific conclusions;
• “Kept statisticians from using more suitable algorithmic models;
• “Prevented statisticians from working on exciting new problems”.
“In the past fifteen years, the growth in algorithmic modeling 
applications and methodology has been rapid. It has occurred 
largely outside statistics in a new community—often called 
machine learning—that is mostly young computer scientists 
(Section 7). The advances, particularly over the last five years, have 
been startling.”
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Breiman’s (2001) ominous prognosis
“Perhaps the damaging consequence of the insistence on data models is 
that statisticians have ruled themselves out of some of the most 
interesting and challenging statistical problems that have arisen out 
of the rapidly increasing ability of computers to store and 
manipulate data. These problems are increasingly present in many fields, 
both scientific and commercial, and solutions are being found by 
nonstatisticians.”
“Over the last ten years, there has been a noticeable move toward 
statistical work on real world problems and reaching out by statisticians 
toward collaborative work with other disciplines. I believe this trend will 
continue and, in fact, has to continue if we are to survive as an 
energetic and creative field.”
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Defining machine learning
• From Breiman, I get a “realist” definition of 

machine learning: An instrumental use of 
correlations to try and mimic the outputs of a 
target system (rather than trying to 
understand causal relationships between 
inputs and outputs). Focus on highly flexible 
“curve fitting” methods. (Diagram: Breiman, 
2001. See also Jones, 2018)

• Key: define ML by contrast to statistics, not 
programming. 
– E.g., if we say “learn from examples rather than 

being programmed with rules”, okay, but how? 
Answer: correlations!!
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Instrumentalist (Jones, 2018) orientation of 
ML

Kass, 2011 Adapted from Borgatti, 2012
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AI/ML as an illusion of statistics (using 
correlations)

“Source subject”: Marquese Scott

Caroline Chan, “Everybody Dance Now: Motion Retargeting Video Subjects.” 
https://youtu.be/PCBTZh41Ris
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When are correlations alone sufficient?

• In 2008, in “End of Theory”, Wired’s Chris Anderson argued that when 
data are big enough, causality doesn’t matter, and correlations alone 
are sufficient (and we don’t need “models”).

• He was trivially wrong (see Harford, 2014; Meng, 2018: and anyway, 
correlation is a model. Also, no amount of data is ever enough, without 
requiring independence assumptions and/or parametric assumptions; 
Opsomer et al., 2001)

• But Leo Breiman’s paper was a legitimate version of this argument much 
earlier: sometimes, for some use cases, correlations alone are sufficient 
(and this has nothing to do with the size of the data).
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ML use cases: Building systems

• Recommend/narrow people’s choices to 
“relevant” ones (friend connections, search 
results, products)

• Detection (facial, fraud)
• Anticipation (customer demand, equipment 

failure)
• It “works”…
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(Large language models and “generative” 
AI)
• Most machine learning up until now has been targeted, and for a specific 

purpose. Large language models were done for getting numerical 
representations of words for downstream tasks

• ”Generative” AI software (better called “imitative”), built on large language 
models (or large “multi-modal” models), does not have a specific purpose. It’s 
not a search engine; it’s not “truth”; it’s not content; it’s just realistic synthetic 
text, and taking it seriously is harmful (Bender, 2024)

• Its outputs are, in principle, a form of predict(); but from a model we can’t 
reason from, or even use for a specific purpose

• Not having a specific use case means that there’s no clear way to benchmark its 
performance. On some potential benchmarks (e.g., answering professional 
licensing test questions) many LLMs do well; on others (e.g., doing math) all 
LLMs do poorly
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(Large language models and “generative” 
AI)
• The software gives an impressive illusion, but what can we reliably build on top of this? 

– Is it worth the centralization of power; energy costs; and water consumption? Should we 
come to rely on a potentially unsustainable business model? 

• It’s annoying to have to deal with this, because it’s more burdensome than exciting from a 
principled scientific and engineering standpoint

• It’s being pushed by marketing, and bought into by non-experts, who are forcing staff scientists 
and engineers to figure out how to use it as less-badly as possible 

• Can’t even do reliability testing, because there are constant, drastic changes even within a single 
sub-version of the software. “…it is impossible to make falsifiable assertions. A system that you 
cannot debug through a logical, Socratic process is a vulnerability that exploitative tech tycoons 
will use to do what they always do, undermine the vulnerable” (Dash, 2023)

• I can’t wait until the hype collapses, and I can go back to fundamentals of modeling, and dealing 
with the problems even in purpose-built ML

Introduction

History and 
nature of 
machine 
learning

Data and 
machine 
learning in
the social 
sciences

What is 
worth using?

Summary

References



S3.2.4: Introduction to Computational and Data Science in the Social Sciences Momin M. Malik | ICQCM Summit 202522 of 55

Problems even from Breiman
• Breiman did not mention in his article the extensive consulting work he did for 

the US military (Jones, 2018), which is another major part of the story. 
• One of the discussants to his article, Bruce Hoadley, contributed to the 

development of FICO scores in the 1980s: while these weren’t continuous with 
machine learning, Hoadley’s description details how insurance independently 
came up with things like decision trees and Generalized Additive Models, and 
were approaching problems in a very machine learning style. Breiman reacted 
enthusiastically in his rejoinder. 

• But insurance is perhaps the most harmful place where correlations (alone) 
have become totally acceptable and accepted in law and practice (Ochigame, 
2020; Kiviat, 2019; Fergus, 2013; Fourcade and Healy, 2013), at least in the US. 
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Correlations can go wrong

• Treating people based on correlations denies agency and 
individuality

• Do we know if a specific output is right or wrong?
• Correlations are proxies, which can be gamed
• Correlations optimize to the average, leaving out those 

who are not “average” (as measured!) (Keyes, 2018)
• Mistakes can be unequally distributed across groups
• Correlations are fragile, and can be a poor basis for 

prediction
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Ex: Chocolate and Nobel prizes?

(Messerli, 2012)
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Correlated, but cause is resources

Resources

Consume
chocolate

Science
funding

Nobel
prizes

A causal graphical model:

Do past patterns continue? E.g., 
small European countries? 
(Missing from here:)
• (Nobel prizes supposedly 

awarded on “merit,” does that 
fit in? Where/How?)

• (What about prejudice?)
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Can’t intervene based on correlations

• Probably won’t win more 
Nobel prizes by feeding 
population more 
chocolate

• Very different sets of 
correlations can 
“predict” equally well 
(Mullainathan & Spiess, 
2017)
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What is “data science”?

• Modern usage attributed to DJ Patil and Jeff Hammerbacher in 2008 (recorded use of term in 
1985; John Tukey described something like it in 1962)
– Aspiration: What statistics could/should have been (consulting, communication, viz, etc.)

• Practically: applied machine learning and a bit of statistics, mostly in business
• Statistics is increasingly rebranding as “statistics and data science” (from 2014 onwards)
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Data and machine learning in the social 
sciences
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“The coming crisis of empirical sociology” 
(2007)
“In 2004 when [Savage] attended the ESRC Research Methods festival… he 
was enrolled in a session designed to popularize social network methods. He 
talked about an ESRC-funded research project which mapped the personal 
connections and ties of members of three voluntary organizations using social 
network analysis. The project had proved time consuming and intensive. A 
lot of time had been spent finding three organizations prepared to participate, 
a postal questionnaire had been sent to 320 members in total, with a very high 
response rate. Many members had been interviewed face-to-face to ask 
detailed questions about their social networks. Thirty life histories had been 
conducted. The resulting intensive study of the members’ social ties was 
amongst the most detailed ever carried out in the UK (see Ray et al., 2003; 
Warde et al., 2005). 
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“The coming crisis of empirical sociology” 
(2007)
“During the Festival Savage talked to other participants interested in social network methods. 
It turned out that one enthusiast was not an academic but worked in a research unit 
attached to a leading telecommunications company. When asked what data he used for 
his social network studies, he shyly replied that he had the entire records of every phone 
call made on his system over several years, amounting to several billion ties. This is 
data which dwarves anything that an academic social scientist could garner. Crucially, it was 
data that did not require a special effort to collect, but was the digital by-product of the 
routine operations of a large capitalist institution. It is also private data to which most 
academics have no access. To be sure, we can cavil about its limits. It does not tell us what 
the callers actually talked about. We can emphasize our superior reflexivity, theoretical 
sophistication, or critical edge. Fair enough – up to a point. Yet the danger is that this 
response involves taking refuge in the reassurance of our own internal world, our own 
assumed abilities to be more ‘sophisticated’, and thereby we chose to ignore the huge 
swathes of ‘social data’ that now proliferate.”
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David Lazer et al. 2009. Computational social science. Science 323 (5915), 721–723.

Eric Fisher. 2011. European detail map of Flickr and Twitter locations, https://flic.kr/p/a1vp4W
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“We check our e-mails 
regularly, make mobile 
phone calls… 

 
David Lazer et al. 2009. Computational social science. Science 323 (5915), 721–723.

Eric Fisher. 2011. European detail map of Flickr and Twitter locations, https://flic.kr/p/a1vp4W



S3.2.4: Introduction to Computational and Data Science in the Social Sciences Momin M. Malik | ICQCM Summit 202533 of 55

“We check our e-mails 
regularly, make mobile 
phone calls… We may post 
blog entries accessible to 
anyone, or maintain 
friendships through online 
social networks.

 
David Lazer et al. 2009. Computational social science. Science 323 (5915), 721–723.

Eric Fisher. 2011. European detail map of Flickr and Twitter locations, https://flic.kr/p/a1vp4W
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“We check our e-mails 
regularly, make mobile 
phone calls… We may post 
blog entries accessible to 
anyone, or maintain 
friendships through online 
social networks. Each of 
these transactions leaves 
digital traces that can be 
compiled into 
comprehensive pictures of 
both individual and group 
behavior, 

 
David Lazer et al. 2009. Computational social science. Science 323 (5915), 721–723.

Eric Fisher. 2011. European detail map of Flickr and Twitter locations, https://flic.kr/p/a1vp4W
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“We check our e-mails 
regularly, make mobile 
phone calls… We may post 
blog entries accessible to 
anyone, or maintain 
friendships through online 
social networks. Each of 
these transactions leaves 
digital traces that can be 
compiled into 
comprehensive pictures of 
both individual and group 
behavior, with the potential 
to transform our 
understanding of our 
lives, organizations, and 
societies.”

David Lazer et al. 2009. Computational social science. Science 323 (5915), 721–723.
Eric Fisher. 2011. European detail map of Flickr and Twitter locations, https://flic.kr/p/a1vp4W
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A “microscope” for social science?
“Disciplines are revolutionized by 
the development of novel tools: the 
telescope for astronomers, the 
microscope for biologists, the 
particle accelerator for physicists, 
and brain imaging for cognitive 
psychologists. Social media provide 
a high-powered lens into the details 
of human behavior and social 
interaction that may prove to be 
equally transformative.”

King (2011)Golder and Macy (2012)
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Cells described in 1665; 

Robert Hooke (1665). Micrographia: or some phyſiological deſcriptions of minute bodies 
made by magnifying glasses. With observations and inquiries thereupon.

Theodor Schwann (1839). Mikroskopische Untersuchungern uber die Uebereinstimmung in der Stuktur 
und dem wachsthum der Thiere und Pfanzen. https://wellcomecollection.org/works/mjpkz6zb.
Joseph Berres (1837). Anatomie der mikroskopischen Geb ilde des menschlichen Körpers.

cell theory in 1830s!
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What happened to social science big data?
• I did my dissertation (2018) critiquing 

claim-making with digital trace data; 
and from what I’ve seen, it never went 
past a bunch of lofty claims (and on the 
other side, anxiety), or bragging about 
this or that paper that never really 
impress me. 

• There’s no major findings or studies I 
can point to that are accepted as 
furthering social science. Are 
arguments that nothing happened 
(Maxmen, 2019). Also now things are 
just swamped out by hype around AI 
and LLMs

• Social Science One (project to 
distribute Facebook data) failed

YOU KEEP ON USING THESE DATA

I DO NOT THINK THEY MEAN WHAT YOU THINK THEY MEAN
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ML: Fragile Families Challenge
• What about machine learning? 
• Matt Salganik organized a “common task” challenge around the 

Fragile Families dataset
• Tried to make machine learning models for “predicting” life 

outcomes: material hardship, GPA, grit, eviction, job training, and 
layoff

• Out of 160 teams, even the “winning” models had an R2 of 0.2 for 
material hardship and GPA, and close to 0 for everything else 
(Salganik et al., 2020)

• R2 (or any other retrospective goodness-of-fit) doesn’t capture 
causality; but ML couldn’t even get a high R2! 
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What is worth using? 
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Nonparametrics
• Note: even most “nonlinear regressions” are “linear models”

• Nonparametrics (which are still linear models) are what are fancy: No 
predetermined functional form (but still predetermined constraints)

• The simplest examples: histograms and LOWESS curves. But 
standard for an actual model: “spline smoothing.”

• The “curse of dimensionality” means that nonparametrics aren’t 
feasible without assuming independence between variables

• “Generalized additive modeling” (GAM) is a separate nonparametric 
fit (usually splines) for each covariate. Big achievement for modern 
statistics. (Hierarchical version: GAMMs). But like histograms and 
LOWESS, for splines and in GAMs, at the end of the day, you’re 
looking at plots; there are no coefficients to interpret
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Nonparametrics
• For really good but not very 

informative fits: random 
forests, or other ensembles of 
trees (XGBoost) are the best 
off-the-shelf classifier for 
tabular data (Caruana et al., 
2008; Fernández-Delgado et 
al., 2014). 

• Neural networks only matter 
for certain types of 
“unstructured” data

Image: Random Forests, in UC Business Analytics R Programming 
Guide, via University of Cincinnati. https://uc-
r.github.io/random_forests
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Semiparametrics
• This is partitioning out your problem into a parametric part, such as 

inferring a causal treatment effect, and a nonparametric part, such as 
calculating propensity scores (rather than using more parametric 
models for propensity scores)

• Examples: Targeted Maximum Likelihood Estimation (next slide), Double 
Machine Learning. Random forest a common choice for ML part

• Matching-based methods are not robust to omitted variable bias from 
unobserved confounders (Arceneux, Gerber, & Green, 2010); but if you 
care about causality, this may better than not trying to control for 
selection
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Targeted Maximum Likelihood Estimation

Hoffman, Kat. 2020. “Visual Guides for Causal 
Inference.” KHstats. 
https://www.khstats.com/art/illustrations_viz

TMLE is an example of 
what are called 
semiparametrics: use a 
random forest to 
estimate propensity 
scores, then have a 
parametric model to 
estimate Average 
Treatment Effect
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Structural causal models (SCM)

Pearl, 2009

Connected terms: “Directed 
Acyclic Graphs” (DAGs), 
Bayesian networks, Graphical 
Models, Causal Graphical 
Model, Probabilistic Graphical 
Models
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SCMs for identifying causal “estimand” 
(Lundberg et al., 2021)
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SCMs for articulating disputes and 
misleading conclusions (Ibid.)

“Note: Each example reports an empirical regularity with a 
vague connection to a theoretical claim. The empirical 
regularity supports the misleading conclusion only under 
identification assumptions that the node at the bottom of 
each Directed Acyclic Graph (DAG; Pearl 2009) does not 
affect both the variable that the researchers hold constant 
(boxed) and the outcome (at right). We draw the Fryer 
(2019) example from a critique by Knox and colleagues 
(2020) that highlights this and other issues with the original 
paper. In the first row, equal use of lethal force against 
Black individuals stopped by police may stem from the fact 
that being stopped is a collider: among those stopped, the 
behavior of Black individuals is likely to be less dangerous. 
In the second row, equal or higher acceptance rates among 
female candidates who apply to Berkeley could result 
because applying to Berkeley is a collider: among women, 
only the strong candidates apply. In the third row, childhood 
income is a collider: Black families who overcome 
discrimination to attain incomes comparable to those of 
White families likely have other advantages that may 
contribute to their children’s incomes in adulthood. When 
we state the theoretical and empirical estimands, the DAG 
makes clear they are not equal and thus the descriptive 
quantity does not support the conclusions drawn.”
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Exploration via [Structural] Topic Models 
(STM)
• “Latent Dirichlet Allocation” in a 

graphical model, but not a causal 
one, for clustering (calculating 
latent classes) in textual data

• STMs allows including covariates
• Ultimately an exploratory 

technique; clusters require 
interpretation, and it’s easy to 
interpret pure noise; and is based 
on co-occurrence, so can only 
find patterns that appear as co-
occurrences
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Variable selection for exploration
• Traditional statistics never came up with good methods 

for model/variable/feature selection. Stepwise regression 
was never really a good idea

• Model/Variable/Feature selection works well for 
“prediction”, but it can also be used as an exploratory 
step

• E.g., fit a random forest, then look at variable importance. 
Or fit a lasso, and see what is selected in. BUT IT IS NOT 
CAUSAL, nor is it even the only set of variables that fit 
equally well (Mullainathan & Spiess, 2017)
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Scaling (human) labels

• Have your human coders (annotators, labelers) label 
a small part of a corpus, then using ML models based 
on correlations with word co-occurrence frequency 
to scale up those labels. All that matters is the quality 
of the final label, which you can check

• Can propagate standard errors using technique in 
“prediction-powered inference” (Angelopoulos et al., 
2023)
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Neural networks for feature extraction, 
dimension reduction, and labeling

• If you do have image data, audio data, 
video data, then neural networks can 
help do something with it

• Left: spatial apartheid in South Africa, 
work from Timnit Gebru’s DAIR Institute 
(Sefala et al., 2021)

• “Edge detection” that happens as a part 
of neural networks can be useful

• Text data; language models can help, 
but the embeddings they produce are 
based only on co-occurrence and 
nothing else
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Summary
• What is data science? Mostly, applied machine learning
– What is machine learning? Correlation-only statistics, no attempt to 

get at causality but more flexible at getting correlations

• What is a “computational method” or “computational science”? 
Unclear; but computation is a core part of everything now

• What is worthwhile? 
– Nonparametrics, DAGs for representing causality, limited use of 

techniques for unstructured data, and scaling human 
labeling/annotation/[qual] coding

• “All models are wrong…” (Box, 1979)
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