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CAVEATS

WHAT TO DO?

BACKGROUND
Artificial intelligence is typically defined in terms of what it 
aspires to do (“th[e] activity devoted to making machines 
intelligent”), or what it seems to do (“a set of technologies… 
inspired by—but typically operate quite differently 
from—the ways people use their nervous systems and 
bodies to sense, learn, reason, and take action”), rather 
than how it does so. 
The “how” is by using statistical correlations. Rather than, 
like in statistical modeling, trying to reason about correla-
tions (e.g., by controlling for confounders), AI models find 
optimal sets of correlations that match to an output (in 
statistical terms, they are often “high-dimensional” and 
“non-parametric” statistical models, but statistical models 
nonetheless).
Thus, we can define AI as the instrumental use of statisti-
cal correlations to match to previously observed output, 
rather than to use correlations to try and model how the 
world works. 

Because of the way that we fit AI models to retrospective 
data (the only data we have), and also test performance 
using retrospective data, if AI models are made from ob-
servational data, then they cannot “predict” the results of 
an intervention. In this sense, the use of the term “predic-
tion” can be misleading, because it is “passive” prediction.  
For example, multiple sets of models that look very differ-
ent to one another, suggesting vastly different underlying 
causal processes, can “predict” equally well in retrospec-
tive data,12 and so are not reliable guides to how to inter-
vene. Breiman called this the “Rashomon problem” and 
saw it as a point against traditional statistical modeling, 
which seldom considers the full range of plausible models 
(but he did not engage with the question of what type of 
modeling better supports deciding how to intervene).

AI models are highly flexible, often by finding correlations 
in ways that are no longer interpretable. E.g., they may find 
correlations after taking multiple nonlinear transformations 
of combinations of multiple sets of variables. 

Rudin15 defines “interpretability” as when models that can 
be understood by looking at them, for example by looking 
at the coefficients of a linear regression model. 

“Explainability” is, for models that are not inherently inter-
pretable, sets of descriptions of how particular model 
inputs are linked to particular model outputs. 

The problem is when we take either our interpretations, or 
explanations, to be statements about the world rather than 
about the model, and base our trust of AI models on how 
well explanations fit with our causal intuitions.

Again in his 2001 article, Breiman3 hails statistical “decision 
and regression trees” as an example of a highly-interpreta-
ble model, as exemplified by a presentation he gave to a 
group of Colorado judges for a model of sources of delay 
in criminal courts: 

“A large decision tree was grown, and I showed it on 
an overhead and explained it to the assembled Col-
orado judges. One of the splits was on District N 
which had a larger delay time than the other dis-
tricts. I refrained from commenting on this. But as I 
walked out I heard one judge say to another, ‘I knew 
those guys in District N were dragging their feet’.”

Was District N really dragging its feet? Or was it due to, 
say, a lack of resources? Decision and regression trees only 
pick up what correlates most highly; they do not consider 
confounding, which is what we should look at when con-
sidering whether or not to blame District N. 

This is an excellent and early example of the dangers of in-
terpretability (let alone explainability): if end users do not 
understand that a model is built only on correlations, then 
they can be misled by “interpreting” causality.

There are some explicit acknowledgments of this tension. 

“one can provide a feasible explanation that fails to 
correspond to a causal structure, exposing a poten-
tial concern.”6

“Because the models in this paper are intelligible, it 
is tempting to interpret them causally. Although the 
models accurately explain the predictions they 
make, they are still based on correlation.”5

“Another problem is that such an interpretation 
might explain the behavior of the model but not give 
deep insight into the causal associations in the un-
derlying data... The real goal may be to discover po-
tentially causal associations that can guide interven-
tions.”9

“OUTCOME REASONING”
Many, perhaps most problems, in healthcare involve inter-
ventions, and intervention requires knowledge of causality, 
such that AI may actually not be appropriate. To take the 
example of hospital readmission, we don’t actually want to 
predict hospital readmissions, but rather, identify prevent-
able hospital readmissions.11 Even if we had a model that 
perfectly predicted hospital readmissions, if it could not 
guide us towards how to intervene to decrease readmis-
sions, then it would not necessarily be of any use. 

Problems that can be addressed only using correlations 
have been called “prediction policy problems,”8 “y-hat 
problems,”12 and more recently, “outcome reasoning.”2 De-
spite multiple arguments that such problems are wide-
spread, are they really? Probably not; but they do at least 
exist.

An exemplary case is that of a “gene signature” for meta-
static breast cancer. In 2002, van’t Veer et al16 published a 
study that used a custom statistical decision tree to find 70 
genes that correlate with metastatic breast cancer in 117 
patients. In the retrospective data, this model was optimal 
(better than clinician decision-making at identifying meta-
static breast cancer); so should we use it? Certainly, it is 
worth running a clinical trial. It took 14 years to get to run-
ning such a trial and publishing the results,4 but the setup 
and result are instructive. 

IS STATISTICS CAUSAL? 
Traditional statistical modeling does not necessarily suc-
ceed in modeling causality.14 Observational causal infer-
ence techniques from econometrics, like instrumental vari-
ables, propensity score matching, and regression disconti-
nuity design, are reasonable but can dramatically fail with-
out us knowing.1 

Still, despite the seeming impossibility of modeling causali-
ty, if our goals really are causal, then we should be doing 
this rather than thinking we can find an adjacent problem 
that solvable with correlations and apply that solution. 

Lastly, machine learning can be used as a part of causal in-
ference techniques, including propensity score matching 
and related techniques of g-estimation, inverse probability 
of treatment weighting (IPTW), Targeted Maximum Likeli-
hood Estimation (TMLE), and “Double Machine Learning.” 

I do not include these as part of AI, as these require the 
same sort of careful causal setup as does interpreting cau-
sality from statistical models. Still, these techniques, espe-
cially when used with Structural Causal Models (SCMs), 
are a good way to do “cautious causal inference”.13

LESSONS
Without this RCT, we would never know how to properly 
use the correlations! There are issues, like how the true 
target should be “gene signature for responding to chemo-
therapy”, and how the initial model was made from very 
little data, but in general this is a good exemplar.

SETUP
If the ML model and the clin-
ical judgment both agreed 
on high risk for metastatic 
breast cancer, patients were 
treated with chemotherapy. 
If both agreed on low risk, 
patients were not. For those 
patients where the model 
and clinical judgment dis-
agreed, patients were ran-
domized into chemotherapy. 

RESULT
They found that chemother-
apy was worse for patients 
with high ML risk, and low 
clinical risk! But for those 
with high clinical risk and low 
ML risk, chemo was similar 
(so, avoid unhelpful pain). 
Conclusion: the ML would be 
a poor replacement for clini-
cal judgment, but can help 
catch clinical false positives. 

MY DEFINITION OF ARTIFICIAL INTELLIGENCE
My proposed definition is entirely about supervised statis-
tical machine learning. It excludes unsupervised machine 
learning (synonymous with clustering in statistics), and it 
also excludes “Good Old-Fashioned AI” (GOFAI) like expert 
systems and symbolic approaches. 

However, the AI that is the focus of hope and anxiety is 
almost exclusively supervised statistical machine learning. 
Even embeddings, which are sometimes classed as “unsu-
pervised”, are calculated by models to impute held-out 
words (i.e., the held-out words are an outcome). GOFAI did 
not prove scalable and/or empirically effective.

Could a different type of AI, not based on supervised sta-
tistical machine learning, arise in the future? Perhaps, but 
then we should address it based on how it works. Technol-
ogy-agnostic approaches make it difficult to address the 
actual issues, which makes irrelevant any potential “fu-
ture-proofing” of more open definitions. 

There is also causal learning, which seeks to infer causal 
structure. But this is based on very strong and unrealistic 
assumptions7 and should be used with great caution. 

1. Recognize “Artificial Intelligence” as an instrumental use 
of statistical correlations. In automating tasks, AI 
works—and can fail—in all and exactly the ways that cor-
relations work and can fail. We can reason about poten-
tial failure points by thinking of where and how correla-
tions can break down. 

2.  Do not take explanations of how AI models arrive at out-
puts as explanations of how the world works—AI models 
are based on correlations, but understandings of the 
world are in terms of causality. We can (and inherently 
do) easily concoct plausible causal stories to explain 
these correlations and see that they “make sense”, but 
we should avoid doing so (correlations is not causation!).

3. If a user, e.g., a clinician, would only accept (“trust”) a 
model based on causality, then AI is unacceptable, 
whether or not it is explainable/explained. There might 
be significant work to do in convincing clinicians that 
there are times and places where we do not need cau-
sality, and finding how to determine this; but this is what 
we need, rather than addressing technological reluc-
tance or skepticism. 

4. Having explanations of model outputs is neither a neces-
sary not a sufficient basis for relying on AI. We ought to 
accept or reject AI based on rigorous, out-of-sample 
(preferably experimental) tests of performance, not on 
whether explanations are present and “make sense”. 
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Fig 1. Reproduction of figure 1 from Leo Breiman’s 2001 landmark article3 
that theorized machine learning (represented by the bottom diagram) as a 
new style of statistical modeling.  
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Fig 2. Schematic diagram of experimental setup and result.
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