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This shows larger themes

- Available data are often only a proxy

- So long as the proxy is never the thing itself, it can fail
- But by interrogating proxies, especially ones we did not
construct, we can better understand them
- Models of relationships and processes, too, are not the
things themselves

« Box (1979): “[For] a model there is no need to ask the
question ‘Is the model true?’. If ‘truth’ is to be the ‘whole
truth’ the answer must be ‘No’. The only question of interest
is ‘Is the model illuminating and useful?."

Critical perspective on measurement in digital trace data and machine learning 30f77 Slides: https://MominMalik.com/mpidr2022.pdf



j\ Quick survey

el - How many people know of Savage and Burrows
Brfitorica (2007)? Breiman (2001)?

il - \\Vhat disciplinary backgrounds?

- Computer science?

Platform
effects

— Statistics? (Math/economics?)

Hierarchy of
limitations in

machine —_— SOCial SCience?

learning

et - How much do you know what machine learning is (or
use it)?

- How is it different from statistics?
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St isorcl Breiman (2001)

- About me
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Summary and conclusion
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Two key historical pieces

- Savage & Burrows (2007): “The coming crisis of
empirical sociology”

- Before Anderson’s “End of theory” (2008) and Lazer et
al's "Computational social science” (2009)
- Breiman (2001): “Statistical modeling: The two
cultures”

- Even earlier

- Includes seeds of things we aren't even fully talked about
yet: from problems with interpretability, to limits of cross-
validation, to multiplicity of models
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"Coming crisis of empirical sociology”
(2007)

Ll ‘'In 2004, [Savage] was enrolled in a [ESRC Research Methods
hll  festival] session designed to popularize social network

il mecthods. He talked about an ESRC-funded research project
[on volunteer organizations]... a postal questionnaire had
been sent to 320 members in total, with a very high
response rate. Many members had been interviewed face-to-
face to ask detailed questions about their social networks...
The resulting intensive study of the members’ social ties was

amongst the most detailed ever carried out in the UK.
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"Coming crisis of empirical sociology”

(2007)

“During the Festival Savage talked to other
participants interested in social network methods. It
turned out that one enthusiast was not an academic
but worked in a research unit attached to a leading
telecommunications company. When asked what
data he used for his social network studies, he
shyly replied that he had the entire records of
every phone call made on his system over
several years, amounting to several billion ties.”
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“Statistical modeling: The two cultures”
(2001)

“the focus in the statistical community on data models has:

- "Led to irrelevant theory and questionable scientific conclusions;
"Kept statisticians from using more suitable algorithmic models;

- "Prevented statisticians from working on exciting new problems”

“In the past fifteen years, the growth in algorithmic modeling
applications and methodology has been rapid. It has occurred
largely outside statistics in a new community-often called
machine learning that is mostly young computer scientists (Section
7). The advances, particularly over the last five years, have been
startling.”
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“Statistical modeling: The two cultures”
(2001)

“Perhaps the damaging consequence of the insistence on data
models is that statisticians have ruled themselves out of some of
the most interesting and challenging statistical problems that
have arisen out of the rapidly increasing ability of computers to
store and manipulate data. These problems are increasingly present
in many fields, both scientific and commercial, and solutions are
being found by nonstatisticians.”

"Over the last ten years, there has been a noticeable move toward
statistical work on real world problems and reaching out by
statisticians toward collaborative work with other disciplines. |
believe this trend will continue and, in fact, has to continue if we are
to survive as an energetic and creative field.”
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Bias in geotagged tweets

Momin M. Malik, Hemank Lamba, Constantine Nakos, and Jirgen
Pfeffer. 2015. Population bias in geotagged tweets. In Papers from
the 2015 ICWSM Workshop on Standards and Practices in Large-
Scale Social Media Research (ICWSM-15 SPSM), pages 18-27. May
26,2015, Oxford, UK. Updated version (2018):
https://www.mominmalik.com/malik_chapter1.pdf
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j\ Many maps just show population
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A But maybe we can use this?
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j\ Do tweets measure population?
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Adapted from Eric Fischer, 2009, Contiguous United States geotag map. Adapted from Geography Division, U.S. Department of Commerce / Economics
https://flic.kr/p/a7WMWS. and Statistics Administration / U.S. Census Bureau, Nighttime Population

References Distribution Wall Map.
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j\ Modeling population vs. users

- Users proportional to population:
Ui = aPi+¢€iP;
- Take a log transformation (+Taylor):
log U; = log o + log P; + €'
- Compare to a linear model:

log Ui = Bo + B1 log P + ¢;
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j\ Result: Not proportional

(Each dot is a Census block group)

Introduction
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j\ ldentifying specifics

- Spatial multivariate modeling of biases
Geotagged tweet users associated with:

- LI Rural, poor, elderly, non-coastal

- LI Asian, Hispanic, black

- ...but these are only the demographics

we can access. E.g., harassment of
women on Twitter likely discourages

geotag use
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Why it matters: Some uses are bad
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Hurricane Sandy, tweets vs. damage/deaths (Shelton et al., 2014)

Bay Park (sewage plant spill) j

/—Staten Island (50% of all Sandy-related deaths)

/—New Dorp/Oakwood (flood, storm)¥ Rockaway (flood, storm)

Breezy Point (fire, flood)
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Responses to demographic bias

Model the specific biases!

Calibration and weighting (Zagheni & Weber,
2015)

Use data for appropriate questions

- "Postcards, not ticket stubs” (Tasse et al., 2017)

Find clever study designs or data comparisons,
establish panels, etc.
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Bias in
geotagged
tweets

Platform

Platform effects in social media

Momin M. Malik and Jirgen Pfeffer. 2016. Identitying platform
effects in social media data. In Proceedings of the Tenth
International AAAI Conference on Web and Social Media
(ICWSM-16), pages 241-249. May 18-20, 2016, Cologne,
Germany. Expanded version (2018):
https://www.mominmalik.com/malik chapter2.pdf
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Social media platforms are businesses
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j\ Sites try to grow their users’ networks
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It's easier than ever to grow
your professional network €
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People You May Know
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Search using a person’s full name or @username

Keton Kakkar @KetonKakkar
Afghan American / Child of Immigrants |
/ | formerly
| Editor
Followed by Frank Pasquale and monicabulger.

William Bumpas @wwbumpas

Now in DC, prev . Likes data, ethnography,
tech, policy, media, critical theory, China, rural US,
subversive memes. Loves any combo thereof.
he/they

Followed by Prof Gina Neff and Oxford Internet Institute.

Rich Borroff @borroff

Running (a minor part of) the computing infrastructure
for a major university in the Boston, MA area, and
trying to keep the bad guys at bay.

Followed by Berkman Klein Center for Internet & Society.

the suggestions below, tailored just for you.

Search Tw

ooo

ooo

ooo
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j\ Recommending “friend-of-a-friend”
i S —

Brief historical People you may know
tour

Introduction
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Bias in
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Problems of
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Summary and
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Behavior, or platform effects?

- When we measure
behavior, what are
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Average Netflix movie ratings over time. Each point
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Rating by date
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mean score
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Data artifacts can reveal inner workings
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A Data artifacts as natural experiments

sl - Regression Discontinuity (RD) Design (technically,
T — Interrupted Time Series, ITS) estimates causality

tour

Bias in
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Platform
effects
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3 |
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Fig. 2 from Imbens and Lemieux (2008): Potential and observed outcome regression functions.

Problems of
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valcation - The difference between "before” and “after” estimates the
Summary e local average treatment effect

conclusion

References

Critical perspective on measurement in digital trace data and machine learning 29 of 77 Slides: https://MominMalik.com/mpidr2022.pdf



Case: Facebook’s “People You May
Know"

Daily added edges Daily added triangles
Introduction
g . Ty
0 s (=3 : ‘o % o
— N ‘b{‘, 8’ % LR
Brief historical Fos o SR
tour AN g wi cerwen
=g cel it |3 KL S
= RO S 8 82 30538 B oub
o3 &% oo ol Soougs ¢ %0 a0 °°,
Dl . A - A T
geotagged da W‘z{"o"o o g PR
ooy o ® °
tweets § i s:g"z % . ) .
BQN, O ° o | Iy’ f‘kgﬁ’s&e. o
M saie < PRAPLT Y i
< 'S z%eﬁ", B8,
Platform %M ossg e *5%“:9; # ﬁw %gg;?&g - 2 S ORI\ 4
effects
e = T T T © T T
2007 2008 2009 2007 2008 2009
Hierarchy of Daily change in transitivity Daily change in density
limitations in ~
machine : % ) ’
learni iy > -
earning . s 5
g A &7
Problems of S - S |
cross- 4 2
validation )
5 © 1
8 -
d N~
o . w0 S
Summary and i 2 e g &,%o‘% o and o o
conclusion PRV E T Al Lo At £ S ' .
?ﬁ&ﬁ:%~&z&ufz% ﬁ%"e : cun S5 R ;%g:y‘g S | o o ts
o %° (0] °
o - ° N N
T T T T
References 2007 2008 2007 2008 2009

Critical perspective on measurement in digital trace data and machine learning 30 of 77 Slides: https://MominMalik.com/mpidr2022.pdf



Introduction

Brief historical
tour

Bias in
geotagged
tweets

Platform
effects

Hierarchy of
limitations in
machine
learning

Problems of
cross-
validation

Summary and
conclusion

References

PYMK changed the Facebook network!

- Facebook links: +300
new edges per day (x2)

1,500

1,000
|

Daily added edges

500

Critical perspective on measurement in digital trace data and machine learning

- Triangles: +3.8 triangles
per edge (x1.62)

Daily added edges

310f 77
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j\ Responses to platform effects

- Investigate: how do Facebook

“triendship” fail to generalize? What
about the Facebook social network?

- Platform eftects are phenomena to study
in themselves!

- Data artifacts as natural experiments

Slides: https://MominMalik.com/mpidr2022.pdf



Hierarchy of limitations in machine
learning

Momin M. Malik. 2020. A hierarchy of limitations
in machine learning.

https://arxiv.org/abs/2002.05193
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Data well-considered; models, not so
much
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j\ Approaches to research
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7\ Quantification locks in meaning
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. Challenges of quantification/
measurement
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A Constructs: Subjective, multifaceted
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j\ Stats and ML use central tendencies
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Summary and
conclusion

References

Critical perspective on measurement in digital trace data and machine learning 39 of 77 Slides: https://MominMalik.com/mpidr2022.pdf



j\ Stats and ML use central tendencies
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Equation

[

Simulation
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Social
Scientist

Nigel Gilbert
Klaus G. Troitzsch
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T\
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Observational [

(Statistics uses numerical
simulations, and simulation
modeling uses statistical
summaries, but they are
distinct types of models)

(Agent-based simulation
also ends up using central
tendencies to summarize a
response surface)

(ABMs generally cannot be
used for prediction, are
only appropriate when we
can't do statistics)
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j\ Causality is hard, maybe too hard
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Properly controlled
experiments lack
ecological validity

Observational inference
can never totally account
for the possibility of
hidden confounders,
which can frustrate even
the most perfect
application of causal
techniques (Arceneaux,

Gerber, & Green, 2010)
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j\ ML is “prediction” only

Introduction
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tour
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Quantitative

Probability based

Explanatory
bservational | | Experim
T\
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T T\
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"Predictions” are defined
as what minimizes loss

|.e., correlations

Non-causal correlations
can sometimes predict
well, but they frequently
don’t explain, and can
fail unexpectedly
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j\ Defining machine learning
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linear regression
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unknown

decision trees
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Machine learning: An
instrumental use of
correlations to try and mimic
the outputs of a target system
(rather than trying to
understand causal
relationships between inputs
and outputs). Focus on highly
flexible “curve-fitting” methods.
(Diagram: Breiman, 2001. See
also Jones, 2018)
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Why are these different goals?

- N
AN

Eor:]erf historical
Bias in
e
Slatform Spurious (non-causal) correlations may fit Carefully built models that capture causality
effects robustly (or "pure” associations) may fit poorly overall
Hisrarchy of IR Breiman 2001: Prediction problems - Breiman 2001: Information
machine - Shmueli 2010: To predict - Shmueli 2010: To explain

- Kleinberg et al. 2015: “"Umbrella - Kleinberg et al. 2015: “Rain dance
o problems” problems”
e - Mullainathan and Spiess 2017: y-hat - Mullainathan and Spiess 2017: beta-hat

Summary and
conclusion

References
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j\ ML: Only external validity
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Kass, 2011
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Adapted from Borgatti, 2012
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j\ Not an obvious usage of “predict”

88 m PREDICTING THE FUTURE

Introduction

Brief historical p R[“mll N TABLE 6.1: A SURVEY OF PREDICTIVE APPROACHES
tour
Predictive Linking Methodology
Approaches Mechanism Of Linkage
g'ea;'ang ged II'[ UNFORMALIZED/JUDGMENTAL
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Platform RUDIMENTARY (ELEMENTARY)
effects _ prevailing trends  projection of prevailing
\n_Introduction o the Theory of forecasting trends
. ting geometric patterns  subsumption under an
Hierarchy of pe :
tablish th
limitations in a A 2 ” o —
machine circumstantial compan'blhty assimilation to an ana-
learning analogy groupings logous situation
SCIENTIFIC (SOPHISTICATED)

indicator coordination causal correlations statistical subsumption
into a correlation

Problems of
cross-

validation law derivation accepted laws inference from accepted

Nicholas Rescher o el

phenomenological formal models analogizing of actual

Summary and

conclusion modeling (physical or (“real-world”) pro-
(analogical) mathematical) cesses with presumably
isomorphic model
References process
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Summary and
conclusion
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Can’t intervene based on correlations

— - Very different sets of
correlations can “predict”
(fit) equally well
(Mullainathan and Spiess
2017)

- Breiman (2001) called this
the "Rashomon Effect”

- But different fits suggest
very different interventions

Parameter in the linear model

1 2 3 4 5 6 7 8 9 10
Fold of the sample
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j\ Interpretability: A red herring?

“A project | worked on in the late 1970s was the
analysis of delay in criminal cases in state court
systems... A large decision tree was grown, and |
showed it on an overhead and explained it to the
assembled Colorado judges. One of the splits was
on District N which had a larger delay time than
the other districts. | refrained from commenting on
this. But as | walked out | heard one judge say to
another, 'l knew those guys in District N were
dragging their feet.” (Breiman, 2001)
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ML performance claims are from cross-
validation

itative

Probability based

planatory
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ﬂ Experimental
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Rescher (1998) notes every prediction
involves a meta-prediction: predict
whether the prediction works

Cross-validation is meta-prediction for
ML

But, how well does cross-validation work?

- "Professor Breiman emphasizes the
importance of performance on the
test sample. However, this can be
overdone. The test sample is
supposed to represent the
population to be encountered in the
future. But in reality, it is usually a
random sample of the current
population. High performance on the
test sample does not guarantee high
performance on future samples,
things do change.” (Hoadley 2001)
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j\ Purpose of cross-validation

. If we are no

Critical perspective on mea

surement in digital trace data and machine learning 51 of 77

onger guided by theory, and use
automatic methods, we risk overfitting: fitting
to the the noise, not the data
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j\ Intuition for cross-validation

ST S U 2

» ® Test 1

d True d
[ ] — Overfit

o °* o o oO Correctly fit ® o o

o N d .
° b ° . ° b .

© . o 'y o
. J U
o ° o © e} ° & °
© ° °
e o © d o e e ()

o ° ° ° O e ° °
. .
O Train
® Test

- |dea: if we split data into two parts, the signal should
_ be the same but the noise would be different

el - Cross validation: Fitting the model on one part of the
data, and “testing” on the other

Problems of
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Overfitting on the test set

Introduction - Re-using a test set can overfit! (Dwork . i S T R e
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Brief historical et aIl 201 5) © " .. :: °° 4, - : .
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Do ed sometimes a little tinkering, which % w0 > O o Greg Park (2012):
tweets . . = 50" o | Repeated tries improved
involves peeking at the test sample. The 2 iy’ thii L ; ,
, o §is° visible test” ranking
Platform result is some bias in the test sample or , ; :
effects 0 10 20 30 . _40 50 60
cross-validation results. This is the same himber:of. Stbassions
Hierarchy of kind of tinkering that upsets test of fit .
i . ~ a3 it .. . -4
o pureness.” (Hoadley 2001, discussantof £, * 7 ., *° o .
A woage -
Breiman) R LTI O I
Problems of 2 oot /L . &
_ . . . A . . . L i e e
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@ b S RE, ) T
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conclusion . E 00 . ama .
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j\ Problems of dependencies
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j% Classic argument for CV
FEA| Y = Y3
-%EmYﬂB+Ew?ﬁ—QEAY”?ﬂ

L[y 3+ — 2t (YY)

+1 T EA(Y)TEA(Y) + 2t pBe (V) }

+ = _—MTM - 2MTEf(?)]

1 [ers o+ - E(7)I3+ — 2tr Cov(Y", V)]
irreducible error + bias® + — optimism
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Apply this to non-iid data

WP - Imagine we have, for £; = 0%and X = po®, [ #j
our Y, X > P 72117
o~V (o

Platform

e + Then, optimism (Efron, 2004) in the training set is:
il 2 tr Cov (Yy, Y1) = 2trCove(Ys, HY1) = 2trHVarg(Y1) = 2tr HE

machine
learning

euad - But test set also has nonzero optimism!

cross-
validation

SRl 2 tr Cov(Ya, Y1) = 2trCove(Ya, HY;) = 27 trH117 = 202

References
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Simulating the toy example

o |
Introduction e Training set [

- Test set

R < 7| —— New draw

Brief historical True mean
tour o |

A

>

Bias in < -
geotagged
tweets o |
Platform o -
effects

P
Hierarchy of
limitations in A
machine
learning —

I =

Problems of
cross- T
validation

o

|
Summaryand o |
conclusion I ‘ ‘ ‘ ‘ ‘ ‘

0.0 0.2 0.4 0.6 0.8 1.0
References
X

Critical perspective on measurement in digital trace data and machine learning 57 of 77 Slides: https://MominMalik.com/mpidr2022.pdf



j\ Out-of-sample MSE: much worse!

Introduction o
o Training error
Brief historical Test set error
tour M . . . O 40
SE ean training error: U. —— Out—of—sample (true) error
Bias in Mean test set error: 0.61
geotagged . .
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Density
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Hierarchy of ~ Estimator variance: 0.61
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Many real-world examples

There are indeed cases where cross-validation
assessments of machine learning performance fail!

Time series: do cross-validation in blocks
- Otherwise, “time traveling,” gives great performance

Activity recognition: “leave one subject out” cross
validation performs far worse (i.e., more honestly)

Froblemsof Necessary but not sufficient; underlying causal
validation

processes can introduce unobserved variance,
destroying previously-holding correlations
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Application to networks

. Y| X2 X5 0 Xy
Introduction
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Brief historical 2 Yo X21 X292 s Xod
tour
Bias in
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Platform
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earning
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Problems of
cross- . .
validation
€nt1 2 1 ya1 1(x01 = x11) X2 — X12 X23
Summary and
conclusion
ez(”) n—1 n Y(n—1)n 1(X(n—1)1 = Xp1) X(n—1)2 — Xn2  X(n—1)3
References 2
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j\ But dyads are dependent too!
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2 i.k) AikArg

Parameter | Network L. . .
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Critical perspective on measurement in digital trace data and machine learning  ¢1 of 77 Slides: https://MominMalik.com/mpidr2022.pdf

Graphical model and matrix notations for ERGM specification terms given in: Snijders et

al. 2006. Joint work with Antonis Manousis and Naji Shajarisales, 2018.



j\ Covariance structure of edges (n = 15)

Total covariance between dyads
« The pairs of edges that are present
together, or aren't present
3 together
* Note: Atheoretical construct, since
we only see edges once (or once
per time slice)

Introduction
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j\So
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what to do?

-y
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Partition nodes into training

and test sets?

- Breaks up triads; omitted
edges “share” information
across training and test
(diagram: blue are edges
that include node 7)

Partition dyads?

- Breaks up nodes; even
worse

Can't eliminate, but can
minimize optimism by
careful data splitting
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Importance of out-of-sample testing
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“Things do change”

Introduction
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References Ginsberg etal., 2012 Santillana et al., 2014
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j\ Real-world testing of ML results
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Sporadic breast tumours
patients <55 years
tumour size <5 cm

lymph node negative (LNO)

_—
Prognosis reporter genes

e ~~

Distant metastases No distant metastases
<5 years >5 years

Correlation to average
1 good prognosis profile

Tumours

Tumours

o
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van't Veer et al. (2002)
found 70 genes
correlated with
developing breast
cancer

Of course the
correlations were
optimal, post-hoc. But
did it generalize?
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Implementation testing

“Clinical” risk
High Low
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Summary and
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References Cardoso et al., 2016, NEJM
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“Clinical” risk
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Implementation testing

“Clinical” risk

Introduction H Ig h I—OW
Brief historical
tour
Both tests . Treat with
Bias i 5
gleagtlangged H|gh agree, hlgh ChemO
tweets .
risk
Platform R|Sk Via
effects .
correlations Don't treat

Hierarchy of with gene :
skt 9¢ with chemo
machine expression
learning . . . .

Finding: Machine learning
Problems of Low alone would make things
validation worse. But as a secondary
Summary and diagnosis, on average it
conluston catches false positives and
References Cardoso etal., 2016, NEIM avoids unhelpful chemo!
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j\ Implementation testing: Details

Baseline Survival (no chemotherapy) Clinicial says low risk, Model says high risk Clinicial says high risk, Model says low risk

Introduction
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Problems of
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validation

Summary and
conclusion
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Summary

nerel - Biases exist, but are not simple, and may be unknowable in

Brief historical g e n e ra |
tour
- When we have a comparison source, we can calibrate, but better may
Bias in . .
geotagged be to find appropriate use cases

tweets

. - Commercial platforms are not always fit for research; but we can
e try to investigate how their design and incentives

Hierarchy of

iess - Machine learning presents new opportunities, but has multiple

machine

earing failure points (often corresponding to long-recognized problems)
Problems o that must be recognized and dealt with

cross-
validation

- Prediction, and cross validation, have fragilities

Summary and

condlusion - Out-of-sample testing is always a good idea
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Conclusion

- There are problems with data; these have been
widely recognized, and we are making progress
on how to work with new forms of data,

including opaque secondary and commercial
data

- There are still fundamental problems limitations
of different modeling approaches, and how
modeling relates to the world: machine learning

is supercharging these, forgetting lessons of the
past
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Other work of mine

pertll - This is what | think is most interesting to this audience
o=l - | have other work:

tour

- Trying to use modeling to imagine alternative states of the world

Bias in

geotagged (Richardson, Malik et al., 2021)

. - Why do "technical” people have such a narrow view of the world, and

efecs how do some come to change? (Malik & Malik, 2021)

fiseal - My current work is on “Al ethics”, which | take to mean, how do we
earing rigorously and responsibly develop and deploy (or choose not to
Problems of develop or deploy) modeling, applied to large-scale data? How

validation

do we choose what modeling approach is appropriate (if any)?

Summary and

conclusion - Thisis largely aimed at biomedical use cases, but developed guidance
will,  hope, apply to any field of social science
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